Qiao Fengmin, Wang Zhenzhen, Xu Ke, Ai Shiyun
College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, P.R. China.
Analyst. 2015 Oct 7;140(19):6684-91. doi: 10.1039/c5an01268f. Epub 2015 Sep 2.
A facile process was developed for the synthesis of FeSe-Pt@SiO2 nanospheres based on the hydrothermal treatment of FeCl3·6H2O, selenium and NaBH4 in ethanolamine solvent, followed by reducing HPtCl4 with NaBH4 in the presence of FeSe particles to obtain FeSe coated with Pt NPs (FeSe-Pt), ending with a surfactant assembled sol-gel process to obtain FeSe-Pt@SiO2. The morphology and composition of FeSe-Pt@SiO2 were characterized by transmission electron microscopy, high resolution TEM, X-ray diffraction and Fourier transform infrared spectroscopy. Structural analyses revealed that FeSe-Pt@SiO2 nanospheres were of regular spherical shape with smooth surfaces due to the SiO2 shells, compared with FeSe particles with 150 nm lateral diameter. The prepared FeSe-Pt@SiO2 nanospheres possessed both intrinsic glucose oxidase (GOx-) and peroxidase-mimic activities, and we engineered an artificial enzymatic cascade system with high activity and stability based on this nanostructure. The good catalytic performance of the composites could be attributed to the synergy between the functions of FeSe particles and Pt NPs. Significantly, the FeSe-Pt@SiO2 nanospheres as robust nanoreactors can catalyze a self-organized cascade reaction, which includes oxidation of glucose by oxygen to yield gluconic acid and H2O2, and then oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a colour change. Colorimetric detection of H2O2 and glucose using the FeSe-Pt@SiO2 nanospheres was conducted with high detection sensitivities, 0.227 nM and 1.136 nM, respectively, demonstrating the feasibility of practical sensing applications. It is therefore believed that our findings in this study could open up the possibility of utilizing FeSe-Pt@SiO2 nanospheres as enzymatic mimics in diagnostic and biotechnology fields.
基于在乙醇胺溶剂中对FeCl3·6H2O、硒和NaBH4进行水热处理,开发了一种简便的方法来合成FeSe-Pt@SiO2纳米球,随后在FeSe颗粒存在下用NaBH4还原HPtCl4以获得包覆有Pt NPs的FeSe(FeSe-Pt),最后通过表面活性剂组装的溶胶-凝胶过程获得FeSe-Pt@SiO2。通过透射电子显微镜、高分辨率TEM、X射线衍射和傅里叶变换红外光谱对FeSe-Pt@SiO2的形貌和组成进行了表征。结构分析表明,与横向直径为150 nm的FeSe颗粒相比由于SiO2壳层,FeSe-Pt@SiO2纳米球呈规则的球形且表面光滑。所制备的FeSe-Pt@SiO2纳米球同时具有内在的葡萄糖氧化酶(GOx-)和过氧化物酶模拟活性,并且我们基于这种纳米结构构建了一个具有高活性和稳定性的人工酶级联系统。复合材料良好的催化性能可归因于FeSe颗粒和Pt NPs功能之间的协同作用。值得注意的是,FeSe-Pt@SiO2纳米球作为坚固的纳米反应器可以催化一个自组织的级联反应,该反应包括氧气将葡萄糖氧化生成葡萄糖酸和H2O2,然后H2O2将3,3,5,5-四甲基联苯胺(TMB)氧化产生颜色变化。使用FeSe-Pt@SiO2纳米球对H2O2和葡萄糖进行比色检测,检测灵敏度分别高达0.227 nM和1.136 nM,证明了实际传感应用的可行性。因此,相信我们在本研究中的发现可能为在诊断和生物技术领域将FeSe-Pt@SiO2纳米球用作酶模拟物开辟可能性。
Anal Chim Acta. 2012-12-5
Biosens Bioelectron. 2015-10-23
ACS Appl Mater Interfaces. 2020-1-3
ACS Appl Mater Interfaces. 2015-7-7
Nanoscale Adv. 2023-7-20
Nanomaterials (Basel). 2018-11-26
Sensors (Basel). 2016-11-17