Qin Xulei, Wang Silun, Shen Ming, Lu Guolan, Zhang Xiaodong, Wagner Mary B, Fei Baowei
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329.
Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329.
Med Phys. 2015 Sep;42(9):5144-56. doi: 10.1118/1.4927788.
Cardiac ultrasound simulation can have important applications in the design of ultrasound systems, understanding the interaction effect between ultrasound and tissue and setting the ground truth for validating quantification methods. Current ultrasound simulation methods fail to simulate the myocardial intensity anisotropies. New simulation methods are needed in order to simulate realistic ultrasound images of the heart.
The proposed cardiac ultrasound image simulation method is based on diffusion tensor imaging (DTI) data of the heart. The method utilizes both the cardiac geometry and the fiber orientation information to simulate the anisotropic intensities in B-mode ultrasound images. Before the simulation procedure, the geometry and fiber orientations of the heart are obtained from high-resolution structural MRI and DTI data, respectively. The simulation includes two important steps. First, the backscatter coefficients of the point scatterers inside the myocardium are processed according to the fiber orientations using an anisotropic model. Second, the cardiac ultrasound images are simulated with anisotropic myocardial intensities. The proposed method was also compared with two other nonanisotropic intensity methods using 50 B-mode ultrasound image volumes of five different rat hearts. The simulated images were also compared with the ultrasound images of a diseased rat heart in vivo. A new segmental evaluation method is proposed to validate the simulation results. The average relative errors (AREs) of five parameters, i.e., mean intensity, Rayleigh distribution parameter σ, and first, second, and third quartiles, were utilized as the evaluation metrics. The simulated images were quantitatively compared with real ultrasound images in both ex vivo and in vivo experiments.
The proposed ultrasound image simulation method can realistically simulate cardiac ultrasound images of the heart using high-resolution MR-DTI data. The AREs of their proposed method are 19% for the mean intensity, 17.7% for the scale parameter of Rayleigh distribution, 36.8% for the first quartile of the image intensities, 25.2% for the second quartile, and 19.9% for the third quartile. In contrast, the errors of the other two methods are generally five times more than those of their proposed method.
The proposed simulation method uses MR-DTI data and realistically generates cardiac ultrasound images with anisotropic intensities inside the myocardium. The ultrasound simulation method could provide a tool for many potential research and clinical applications in cardiac ultrasound imaging.
心脏超声模拟在超声系统设计、理解超声与组织的相互作用效应以及为验证定量方法设定基准真值方面具有重要应用。当前的超声模拟方法无法模拟心肌强度各向异性。因此需要新的模拟方法来模拟逼真的心脏超声图像。
所提出的心脏超声图像模拟方法基于心脏的扩散张量成像(DTI)数据。该方法利用心脏几何形状和纤维方向信息来模拟B模式超声图像中的各向异性强度。在模拟过程之前,分别从高分辨率结构MRI和DTI数据中获取心脏的几何形状和纤维方向。模拟包括两个重要步骤。首先,使用各向异性模型根据纤维方向处理心肌内点散射体的后向散射系数。其次,模拟具有各向异性心肌强度的心脏超声图像。还使用来自五只不同大鼠心脏的50个B模式超声图像体积将所提出的方法与其他两种非各向异性强度方法进行了比较。模拟图像还与患病大鼠心脏的体内超声图像进行了比较。提出了一种新的分段评估方法来验证模拟结果。使用五个参数的平均相对误差(ARE),即平均强度、瑞利分布参数σ以及第一、第二和第三四分位数,作为评估指标。在体外和体内实验中对模拟图像与真实超声图像进行了定量比较。
所提出的超声图像模拟方法可以使用高分辨率MR-DTI数据逼真地模拟心脏的超声图像。其方法的平均强度ARE为19%,瑞利分布尺度参数为17.7%,图像强度第一四分位数为36.8%,第二四分位数为25.2%,第三四分位数为19.9%。相比之下,其他两种方法的误差通常比其方法大五倍。
所提出的模拟方法使用MR-DTI数据并逼真地生成心肌内具有各向异性强度的心脏超声图像。该超声模拟方法可为心脏超声成像中的许多潜在研究和临床应用提供工具。