Asclepios Research Project, Inria Sophia Antipolis, 06902 Sophia Antipolis, France.
IEEE Trans Med Imaging. 2013 Jan;32(1):99-109. doi: 10.1109/TMI.2012.2220375. Epub 2012 Sep 21.
We propose a new approach for the generation of synthetic but visually realistic time series of cardiac images based on an electromechanical model of the heart and real clinical 4-D image sequences. This is achieved by combining three steps. The first step is the simulation of a cardiac motion using an electromechanical model of the heart and the segmentation of the end diastolic image of a cardiac sequence. We use biophysical parameters related to the desired condition of the simulated subject. The second step extracts the cardiac motion from the real sequence using nonrigid image registration. Finally, a synthetic time series of cardiac images corresponding to the simulated motion is generated in the third step by combining the motion estimated by image registration and the simulated one. With this approach, image processing algorithms can be evaluated as we know the ground-truth motion underlying the image sequence. Moreover, databases of visually realistic images of controls and patients can be generated for which the underlying cardiac motion and some biophysical parameters are known. Such databases can open new avenues for machine learning approaches.
我们提出了一种新的方法,用于基于心脏的机电模型和真实的临床 4D 图像序列生成具有视觉逼真的合成心脏图像时间序列。这通过三个步骤来实现。第一步是使用心脏的机电模型模拟心脏运动,并对心脏序列的舒张末期图像进行分割。我们使用与模拟对象的预期状态相关的生物物理参数。第二步使用非刚性图像配准从真实序列中提取心脏运动。最后,在第三步中,通过将图像配准估计的运动和模拟的运动相结合,生成与模拟运动相对应的合成心脏图像时间序列。通过这种方法,我们可以评估图像处理算法,因为我们知道图像序列下的真实运动。此外,可以生成具有视觉逼真的控制和患者图像的数据库,这些图像的基础心脏运动和一些生物物理参数是已知的。这种数据库可以为机器学习方法开辟新的途径。