Wagenführ Lisa, Meyer Anne K, Braunschweig Lena, Marrone Lara, Storch Alexander
Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstrasse 74, Dresden 01307, Germany Leibniz Institute for Solid State and Material Research, IFW Dresden, Institute for Integrative Nanosciences, Helmholtzstrasse 20, Dresden 01069, Germany.
Development. 2015 Sep 1;142(17):2904-15. doi: 10.1242/dev.121939.
The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate.
哺乳动物新皮层呈现出一种保守的六层结构,由于不同祖细胞群体相对丰度的差异,不同物种的皮层神经元总数有所不同。最近的研究在灵长类动物和雪貂等脑回物种的外侧脑室下区(OSVZ)中发现了一类新的增殖性神经源性细胞。小鼠的平滑脑拥有较少的类似OSVZ的祖细胞,且这些细胞并不构成一个独特的层。大多数体外和体内研究表明,氧气调节神经祖细胞的维持、增殖和分化。在这里,我们使用一种新型小鼠模型来剖析胎儿脑氧张力对神经祖细胞活性的影响,该模型能够在体内胎儿脑神经源性微环境的缺氧微环境中控制氧张力。事实上,将母体氧气处理设置为大气氧张力的10%、21%和75%,持续48小时,会导致胎儿脑氧合发生显著变化。体内胎儿小鼠前脑氧张力的增加导致SVZ基部一个独特的增殖细胞群体显著扩张。这些细胞构成了一个类似于OSVZ的新型神经源性细胞层,并作为皮质板的一部分向更深的皮层迁移,从而促进皮质发生。