Suppr超能文献

固态硬盘会加速你的生物信息学进程吗?深入剖析、性能分析及其他。

Will solid-state drives accelerate your bioinformatics? In-depth profiling, performance analysis and beyond.

作者信息

Lee Sungmin, Min Hyeyoung, Yoon Sungroh

出版信息

Brief Bioinform. 2016 Jul;17(4):713-27. doi: 10.1093/bib/bbv073. Epub 2015 Sep 1.

Abstract

A wide variety of large-scale data have been produced in bioinformatics. In response, the need for efficient handling of biomedical big data has been partly met by parallel computing. However, the time demand of many bioinformatics programs still remains high for large-scale practical uses because of factors that hinder acceleration by parallelization. Recently, new generations of storage devices have emerged, such as NAND flash-based solid-state drives (SSDs), and with the renewed interest in near-data processing, they are increasingly becoming acceleration methods that can accompany parallel processing. In certain cases, a simple drop-in replacement of hard disk drives by SSDs results in dramatic speedup. Despite the various advantages and continuous cost reduction of SSDs, there has been little review of SSD-based profiling and performance exploration of important but time-consuming bioinformatics programs. For an informative review, we perform in-depth profiling and analysis of 23 key bioinformatics programs using multiple types of devices. Based on the insight we obtain from this research, we further discuss issues related to design and optimize bioinformatics algorithms and pipelines to fully exploit SSDs. The programs we profile cover traditional and emerging areas of importance, such as alignment, assembly, mapping, expression analysis, variant calling and metagenomics. We explain how acceleration by parallelization can be combined with SSDs for improved performance and also how using SSDs can expedite important bioinformatics pipelines, such as variant calling by the Genome Analysis Toolkit and transcriptome analysis using RNA sequencing. We hope that this review can provide useful directions and tips to accompany future bioinformatics algorithm design procedures that properly consider new generations of powerful storage devices.

摘要

生物信息学领域已经产生了各种各样的大规模数据。相应地,并行计算在一定程度上满足了高效处理生物医学大数据的需求。然而,由于存在阻碍并行化加速的因素,许多生物信息学程序对于大规模实际应用而言,其时间需求仍然很高。最近,新一代存储设备已经出现,如基于NAND闪存的固态硬盘(SSD),并且随着对近数据处理的重新关注,它们越来越成为可以伴随并行处理的加速方法。在某些情况下,简单地用SSD替换硬盘驱动器会带来显著的加速。尽管SSD具有各种优点且成本不断降低,但对于基于SSD的重要但耗时的生物信息学程序的分析和性能探索却很少。为了进行全面的综述,我们使用多种类型的设备对23个关键生物信息学程序进行了深入分析和剖析。基于我们从这项研究中获得的见解,我们进一步讨论与设计和优化生物信息学算法及流程以充分利用SSD相关的问题。我们分析的程序涵盖了传统和新兴的重要领域,如比对、组装、映射、表达分析、变异检测和宏基因组学。我们解释了如何将并行化加速与SSD相结合以提高性能,以及使用SSD如何加快重要的生物信息学流程,如使用基因组分析工具包进行变异检测和使用RNA测序进行转录组分析。我们希望这篇综述能够为未来生物信息学算法设计程序提供有用的指导和提示,使其能够恰当地考虑新一代强大的存储设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验