Suppr超能文献

改进临床前PET成像中局部感兴趣区域的定量分析。

Improved quantification for local regions of interest in preclinical PET imaging.

作者信息

Cal-González J, Moore S C, Park M-A, Herraiz J L, Vaquero J J, Desco M, Udias J M

机构信息

Grupo de Física Nuclear, Dpto. de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Spain.

出版信息

Phys Med Biol. 2015 Sep 21;60(18):7127-49. doi: 10.1088/0031-9155/60/18/7127. Epub 2015 Sep 3.

Abstract

In Positron Emission Tomography, there are several causes of quantitative inaccuracy, such as partial volume or spillover effects. The impact of these effects is greater when using radionuclides that have a large positron range, e.g. (68)Ga and (124)I, which have been increasingly used in the clinic. We have implemented and evaluated a local projection algorithm (LPA), originally evaluated for SPECT, to compensate for both partial-volume and spillover effects in PET. This method is based on the use of a high-resolution CT or MR image, co-registered with a PET image, which permits a high-resolution segmentation of a few tissues within a volume of interest (VOI) centered on a region within which tissue-activity values need to be estimated. The additional boundary information is used to obtain improved activity estimates for each tissue within the VOI, by solving a simple inversion problem. We implemented this algorithm for the preclinical Argus PET/CT scanner and assessed its performance using the radionuclides (18)F, (68)Ga and (124)I. We also evaluated and compared the results obtained when it was applied during the iterative reconstruction, as well as after the reconstruction as a postprocessing procedure. In addition, we studied how LPA can help to reduce the 'spillover contamination', which causes inaccurate quantification of lesions in the immediate neighborhood of large, 'hot' sources. Quantification was significantly improved by using LPA, which provided more accurate ratios of lesion-to-background activity concentration for hot and cold regions. For (18)F, the contrast was improved from 3.0 to 4.0 in hot lesions (when the true ratio was 4.0) and from 0.16 to 0.06 in cold lesions (true ratio  =  0.0), when using the LPA postprocessing. Furthermore, activity values estimated within the VOI using LPA during reconstruction were slightly more accurate than those obtained by post-processing, while also visually improving the image contrast and uniformity within the VOI.

摘要

在正电子发射断层扫描(PET)中,存在多种导致定量不准确的原因,例如部分容积效应或溢出效应。当使用具有较大正电子射程的放射性核素时,这些效应的影响会更大,例如(68)Ga和(124)I,它们在临床上的使用越来越广泛。我们实施并评估了一种最初用于单光子发射计算机断层扫描(SPECT)的局部投影算法(LPA),以补偿PET中的部分容积效应和溢出效应。该方法基于使用与PET图像配准的高分辨率CT或MR图像,这允许对以需要估计组织活性值的区域为中心的感兴趣体积(VOI)内的几种组织进行高分辨率分割。通过解决一个简单的反演问题,利用额外的边界信息来获得VOI内每个组织的改进活性估计。我们在临床前的阿格斯PET/CT扫描仪上实现了该算法,并使用放射性核素(18)F、(68)Ga和(124)I评估了其性能。我们还评估并比较了在迭代重建期间应用该算法以及在重建后作为后处理程序时获得的结果。此外,我们研究了LPA如何有助于减少“溢出污染”,这种污染会导致对大的“热”源附近病变的定量不准确。使用LPA显著改善了定量,它为热区和冷区提供了更准确的病变与背景活性浓度比。对于(18)F,在使用LPA后处理时,热病变的对比度从3.0提高到4.0(真实比值为4.0),冷病变的对比度从0.16提高到0.06(真实比值 = 0.0)。此外,在重建期间使用LPA在VOI内估计的活性值比后处理获得的活性值略准确,同时在视觉上也改善了VOI内的图像对比度和均匀性。

相似文献

1
Improved quantification for local regions of interest in preclinical PET imaging.
Phys Med Biol. 2015 Sep 21;60(18):7127-49. doi: 10.1088/0031-9155/60/18/7127. Epub 2015 Sep 3.
3
Subcentimeter tumor lesion delineation for high-resolution 18F-FDG PET images: optimizing correction for partial-volume effects.
J Nucl Med Technol. 2013 Jun;41(2):85-91. doi: 10.2967/jnmt.112.117234. Epub 2013 May 8.
4
Accuracy and Precision of Partial-Volume Correction in Oncological PET/CT Studies.
J Nucl Med. 2016 Oct;57(10):1642-1649. doi: 10.2967/jnumed.116.173831. Epub 2016 May 26.
5
Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging.
Phys Med Biol. 2010 Apr 21;55(8):2365-98. doi: 10.1088/0031-9155/55/8/016. Epub 2010 Apr 1.
7
Quantitative (90)Y image reconstruction in PET.
Med Phys. 2012 Nov;39(11):7153-9. doi: 10.1118/1.4762403.
9
Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.
J Nucl Med. 2015 Apr;56(4):635-41. doi: 10.2967/jnumed.114.148817. Epub 2015 Mar 5.
10
Tissue-Dependent and Spatially-Variant Positron Range Correction in 3D PET.
IEEE Trans Med Imaging. 2015 Nov;34(11):2394-403. doi: 10.1109/TMI.2015.2436711. Epub 2015 May 22.

引用本文的文献

1
Accuracy of PET quantification in [Ga]Ga-pentixafor PET/MR imaging of carotid plaques.
J Nucl Cardiol. 2022 Apr;29(2):492-502. doi: 10.1007/s12350-020-02257-3. Epub 2020 Jul 21.
2
Vulnerable plaque imaging using F-sodium fluoride positron emission tomography.
Br J Radiol. 2020 Sep 1;93(1113):20190797. doi: 10.1259/bjr.20190797. Epub 2019 Dec 19.
4
Partial volume correction for improved PET quantification in F-NaF imaging of atherosclerotic plaques.
J Nucl Cardiol. 2018 Oct;25(5):1742-1756. doi: 10.1007/s12350-017-0778-2. Epub 2017 Feb 7.
5
Noise suppressed partial volume correction for cardiac SPECT/CT.
Med Phys. 2016 Sep;43(9):5225. doi: 10.1118/1.4961391.

本文引用的文献

1
Tissue-Dependent and Spatially-Variant Positron Range Correction in 3D PET.
IEEE Trans Med Imaging. 2015 Nov;34(11):2394-403. doi: 10.1109/TMI.2015.2436711. Epub 2015 May 22.
2
Simulation of triple coincidences in PET.
Phys Med Biol. 2015 Jan 7;60(1):117-36. doi: 10.1088/0031-9155/60/1/117. Epub 2014 Dec 5.
3
Positron range estimations with PeneloPET.
Phys Med Biol. 2013 Aug 7;58(15):5127-52. doi: 10.1088/0031-9155/58/15/5127. Epub 2013 Jul 9.
4
The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study.
Phys Med Biol. 2013 Mar 21;58(6):1759-73. doi: 10.1088/0031-9155/58/6/1759. Epub 2013 Feb 26.
5
Magnetic resonance-guided positron emission tomography image reconstruction.
Semin Nucl Med. 2013 Jan;43(1):30-44. doi: 10.1053/j.semnuclmed.2012.08.006.
7
A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology.
Phys Med Biol. 2012 Nov 7;57(21):R119-59. doi: 10.1088/0031-9155/57/21/R119. Epub 2012 Oct 16.
8
Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest.
Phys Med Biol. 2012 Feb 7;57(3):685-701. doi: 10.1088/0031-9155/57/3/685. Epub 2012 Jan 13.
9
Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and spillover effects.
IEEE Trans Med Imaging. 2012 Feb;31(2):405-16. doi: 10.1109/TMI.2011.2169981. Epub 2011 Sep 29.
10
Quantitative imaging of 124I and 86Y with PET.
Eur J Nucl Med Mol Imaging. 2011 May;38 Suppl 1(Suppl 1):S10-8. doi: 10.1007/s00259-011-1768-2. Epub 2011 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验