Liang Yuan-Chang, Liu Shang-Luen, Hsia Hao-Yuan
Institute of Materials Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan,
Nanoscale Res Lett. 2015 Dec;10(1):1059. doi: 10.1186/s11671-015-1059-0. Epub 2015 Sep 3.
We successfully prepared one-dimensional ZnO-ZnFe2O4 (ZFO) heterostructures for acetone gas-sensing and photoelectrochemical applications, by using sputter deposition of ZFO crystallites on ZnO nanostructure templates. The nanoscale ZFO crystallites were homogeneously coated on the surfaces of the ZnO nanostructures. Electron microscope images revealed that the ZnO-ZFO heterostructures exhibited a serrated surface morphology. Coating the ZnO nanostructures with a ZFO aggregated layer appreciably enhanced their acetone gas-sensing capability at 250 °C in comparison with pure ZnO nanostructures. The presence of many depleted nanoscale ZFO crystallites, the rugged surface of the heterostructures, and electron depletion at the ZnO/ZFO interface might contribute to the enhanced acetone gas-sensing response. Furthermore, the larger surface area and higher light absorption of ZnO-ZFO relative to the surface area and light absorption of ZnO were correlated with a substantial enhancement of the photocurrent value of ZnO-ZFO in photoelectrochemical tests produced by the simulated solar light irradiation.
我们通过在ZnO纳米结构模板上溅射沉积ZFO微晶,成功制备了用于丙酮气敏和光电化学应用的一维ZnO-ZnFe2O4(ZFO)异质结构。纳米级ZFO微晶均匀地包覆在ZnO纳米结构的表面。电子显微镜图像显示,ZnO-ZFO异质结构呈现出锯齿状的表面形态。与纯ZnO纳米结构相比,用ZFO聚集层包覆ZnO纳米结构显著提高了它们在250℃时对丙酮的气敏能力。许多耗尽的纳米级ZFO微晶的存在、异质结构粗糙的表面以及ZnO/ZFO界面处的电子耗尽可能有助于增强对丙酮的气敏响应。此外,相对于ZnO的表面积和光吸收,ZnO-ZFO更大的表面积和更高的光吸收与模拟太阳光照射产生的光电化学测试中ZnO-ZFO光电流值的显著增强相关。