Zhuang Peixian, Wu Jiamin, Porikli Fatih, Li Chongyi
IEEE Trans Image Process. 2022;31:5442-5455. doi: 10.1109/TIP.2022.3196546. Epub 2022 Aug 17.
Underwater image enhancement aims at improving the visibility and eliminating color distortions of underwater images degraded by light absorption and scattering in water. Recently, retinex variational models show remarkable capacity of enhancing images by estimating reflectance and illumination in a retinex decomposition course. However, ambiguous details and unnatural color still challenge the performance of retinex variational models on underwater image enhancement. To overcome these limitations, we propose a hyper-laplacian reflectance priors inspired retinex variational model to enhance underwater images. Specifically, the hyper-laplacian reflectance priors are established with the l -norm penalty on first-order and second-order gradients of the reflectance. Such priors exploit sparsity-promoting and complete-comprehensive reflectance that is used to enhance both salient structures and fine-scale details and recover the naturalness of authentic colors. Besides, the l norm is found to be suitable for accurately estimating the illumination. As a result, we turn a complex underwater image enhancement issue into simple subproblems that separately and simultaneously estimate the reflection and the illumination that are harnessed to enhance underwater images in a retinex variational model. We mathematically analyze and solve the optimal solution of each subproblem. In the optimization course, we develop an alternating minimization algorithm that is efficient on element-wise operations and independent of additional prior knowledge of underwater conditions. Extensive experiments demonstrate the superiority of the proposed method in both subjective results and objective assessments over existing methods. The code is available at: https://github.com/zhuangpeixian/HLRP.
水下图像增强旨在提高水下图像的可视性,并消除因水中光吸收和散射而退化的水下图像的颜色失真。最近,视网膜变分模型在视网膜分解过程中通过估计反射率和光照,展现出显著的图像增强能力。然而,模糊的细节和不自然的颜色仍然对视网膜变分模型在水下图像增强方面的性能构成挑战。为了克服这些限制,我们提出了一种受超拉普拉斯反射率先验启发的视网膜变分模型来增强水下图像。具体而言,超拉普拉斯反射率先验是通过对反射率的一阶和二阶梯度施加l -范数惩罚来建立的。这种先验利用了促进稀疏性和完全综合的反射率,用于增强显著结构和精细尺度细节,并恢复真实颜色的自然度。此外,发现l范数适用于准确估计光照。因此,我们将一个复杂的水下图像增强问题转化为简单的子问题,分别并同时估计反射率和光照,然后在视网膜变分模型中利用它们来增强水下图像。我们对每个子问题的最优解进行数学分析和求解。在优化过程中,我们开发了一种交替最小化算法,该算法在逐元素运算方面效率高,并且不依赖于水下条件的额外先验知识。大量实验表明,与现有方法相比,所提出的方法在主观结果和客观评估方面均具有优势。代码可在以下网址获取:https://github.com/zhuangpeixian/HLRP 。