Suppr超能文献

基于液滴微流控的高通量细菌培养用于微生物共现网络中分类群对的验证。

Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks.

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, People's Republic of China.

State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.

出版信息

Sci Rep. 2022 Oct 28;12(1):18145. doi: 10.1038/s41598-022-23000-7.

Abstract

Co-occurrence networks inferred from the abundance data of microbial communities are widely applied to predict microbial interactions. However, the high workloads of bacterial isolation and the complexity of the networks themselves constrained experimental demonstrations of the predicted microbial associations and interactions. Here, we integrate droplet microfluidics and bar-coding logistics for high-throughput bacterial isolation and cultivation from environmental samples, and experimentally investigate the relationships between taxon pairs inferred from microbial co-occurrence networks. We collected Potamogeton perfoliatus plants (including roots) and associated sediments from Beijing Olympic Park wetland. Droplets of series diluted homogenates of wetland samples were inoculated into 126 96-well plates containing R2A and TSB media. After 10 days of cultivation, 65 plates with > 30% wells showed microbial growth were selected for the inference of microbial co-occurrence networks. We cultivated 129 bacterial isolates belonging to 15 species that could represent the zero-level OTUs (Zotus) in the inferred co-occurrence networks. The co-cultivations of bacterial isolates corresponding to the prevalent Zotus pairs in networks were performed on agar plates and in broth. Results suggested that positively associated Zotu pairs in the co-occurrence network implied complicated relations including neutralism, competition, and mutualism, depending on bacterial isolate combination and cultivation time.

摘要

从微生物群落丰度数据推断出的共生网络被广泛应用于预测微生物相互作用。然而,细菌分离的高工作量和网络本身的复杂性限制了对预测微生物关联和相互作用的实验验证。在这里,我们整合了液滴微流控和条形码物流技术,用于从环境样本中进行高通量细菌分离和培养,并从实验上研究了从微生物共生网络推断出的分类群对之间的关系。我们从北京奥林匹克公园湿地采集了菹草(包括根)及其相关沉积物。将湿地样本的系列稀释匀浆滴接种到含有 R2A 和 TSB 培养基的 126 个 96 孔板中。培养 10 天后,选择 65 个有超过 30%孔显示微生物生长的平板用于推断微生物共生网络。我们培养了 129 株细菌分离株,它们属于 15 个种,这些种可以代表推断的共生网络中的零级 OTU(Zotus)。在琼脂平板和肉汤中进行了对应于网络中普遍存在的 Zotus 对的细菌分离株的共培养。结果表明,共生网络中呈正相关的 Zotu 对暗示了复杂的关系,包括中性、竞争和互利共生,这取决于细菌分离株组合和培养时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1973/9616874/36dc0e8e2fbe/41598_2022_23000_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验