Suppr超能文献

学习紧凑二进制人脸描述符进行人脸识别。

Learning Compact Binary Face Descriptor for Face Recognition.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2015 Oct;37(10):2041-56. doi: 10.1109/TPAMI.2015.2408359.

Abstract

Binary feature descriptors such as local binary patterns (LBP) and its variations have been widely used in many face recognition systems due to their excellent robustness and strong discriminative power. However, most existing binary face descriptors are hand-crafted, which require strong prior knowledge to engineer them by hand. In this paper, we propose a compact binary face descriptor (CBFD) feature learning method for face representation and recognition. Given each face image, we first extract pixel difference vectors (PDVs) in local patches by computing the difference between each pixel and its neighboring pixels. Then, we learn a feature mapping to project these pixel difference vectors into low-dimensional binary vectors in an unsupervised manner, where 1) the variance of all binary codes in the training set is maximized, 2) the loss between the original real-valued codes and the learned binary codes is minimized, and 3) binary codes evenly distribute at each learned bin, so that the redundancy information in PDVs is removed and compact binary codes are obtained. Lastly, we cluster and pool these binary codes into a histogram feature as the final representation for each face image. Moreover, we propose a coupled CBFD (C-CBFD) method by reducing the modality gap of heterogeneous faces at the feature level to make our method applicable to heterogeneous face recognition. Extensive experimental results on five widely used face datasets show that our methods outperform state-of-the-art face descriptors.

摘要

二进制特征描述符,如局部二值模式 (LBP) 及其变体,由于其出色的鲁棒性和强大的判别能力,已被广泛应用于许多人脸识别系统中。然而,大多数现有的二进制人脸描述符都是手工制作的,需要通过手工设计来获得强先验知识。在本文中,我们提出了一种紧凑的二进制人脸描述符 (CBFD) 特征学习方法,用于人脸表示和识别。给定每张人脸图像,我们首先通过计算每个像素与其相邻像素之间的差异,在局部补丁中提取像素差向量 (PDV)。然后,我们学习一种特征映射,以无监督的方式将这些像素差向量投影到低维二进制向量中,其中 1)最大化训练集中所有二进制码的方差,2)最小化原始实值码和学习到的二进制码之间的损失,3)二进制码在每个学习到的 bin 上均匀分布,从而去除 PDV 中的冗余信息并获得紧凑的二进制码。最后,我们将这些二进制码聚类并汇集成一个直方图特征,作为每个人脸图像的最终表示。此外,我们通过减少特征层面上异构人脸的模态差距,提出了一种耦合 CBFD (C-CBFD) 方法,使我们的方法能够应用于异构人脸识别。在五个广泛使用的人脸数据集上的大量实验结果表明,我们的方法优于最先进的人脸描述符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验