Lu Jiwen, Liong Venice Erin, Zhou Jie
IEEE Trans Pattern Anal Mach Intell. 2018 Aug;40(8):1979-1993. doi: 10.1109/TPAMI.2017.2737538. Epub 2017 Aug 9.
In this paper, we propose a simultaneous local binary feature learning and encoding (SLBFLE) approach for both homogeneous and heterogeneous face recognition. Unlike existing hand-crafted face descriptors such as local binary pattern (LBP) and Gabor features which usually require strong prior knowledge, our SLBFLE is an unsupervised feature learning approach which automatically learns face representation from raw pixels. Unlike existing binary face descriptors such as the LBP, discriminant face descriptor (DFD), and compact binary face descriptor (CBFD) which use a two-stage feature extraction procedure, our SLBFLE jointly learns binary codes and the codebook for local face patches so that discriminative information from raw pixels from face images of different identities can be obtained by using a one-stage feature learning and encoding procedure. Moreover, we propose a coupled simultaneous local binary feature learning and encoding (C-SLBFLE) method to make the proposed approach suitable for heterogenous face matching. Unlike most existing coupled feature learning methods which learn a pair of transformation matrices for each modality, we exploit both the common and specific information from heterogeneous face samples to characterize their underlying correlations. Experimental results on six widely used face datasets including the LFW, YouTube Face (YTF), FERET, PaSC, CASIA VIS-NIR 2.0, and Multi-PIE datasets are presented to demonstrate the effectiveness of the proposed methods.
在本文中,我们提出了一种用于同质和异质人脸识别的同步局部二值特征学习与编码(SLBFLE)方法。与现有的手工制作的人脸描述符(如局部二值模式(LBP)和Gabor特征,它们通常需要强大的先验知识)不同,我们的SLBFLE是一种无监督特征学习方法,它能从原始像素中自动学习人脸表示。与现有的二值人脸描述符(如LBP、判别性人脸描述符(DFD)和紧凑二值人脸描述符(CBFD),它们使用两阶段特征提取过程)不同,我们的SLBFLE联合学习局部人脸块的二值编码和码本,以便通过单阶段特征学习与编码过程,从不同身份的人脸图像的原始像素中获取判别性信息。此外,我们提出了一种耦合同步局部二值特征学习与编码(C-SLBFLE)方法,使所提出的方法适用于异质人脸匹配。与大多数现有的耦合特征学习方法不同,后者为每种模态学习一对变换矩阵,我们利用异质人脸样本中的共同和特定信息来表征它们潜在的相关性。在包括LFW、YouTube Face(YTF)、FERET、PaSC、CASIA VIS-NIR 2.0和Multi-PIE数据集在内的六个广泛使用的人脸数据集上的实验结果表明了所提出方法的有效性。