Suppr超能文献

学习旋转不变的局部二值描述符。

Learning Rotation-Invariant Local Binary Descriptor.

出版信息

IEEE Trans Image Process. 2017 Aug;26(8):3636-3651. doi: 10.1109/TIP.2017.2704661. Epub 2017 May 16.

Abstract

In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.

摘要

在本文中,我们提出了一种用于视觉识别的旋转不变局部二值描述符(RI-LBD)学习方法。与需要强先验知识的手工制作的局部二值描述符(如局部二值模式及其变体)相比,局部二值特征学习方法更高效且更具数据适应性。与现有的基于学习的局部二值描述符(如紧凑二进制人脸描述符和同时局部二值特征学习和编码)不同,这些描述符容易受到旋转的影响,我们的 RI-LBD 首先将每个局部补丁分类为旋转二进制模式(RBP),然后联合学习每个模式的方向和投影矩阵,以获得 RI-LBD。由于补丁的所有旋转变体都属于相同的 RBP,因此它们被旋转到相同的方向并投影到相同的二进制描述符中。然后,我们通过聚类方法在学习到的二进制代码上构建一个码本,并为每个图像获得一个直方图特征作为最终表示。为了利用更高阶的统计信息,我们将 RI-LBD 扩展到三重旋转不变共现局部二值描述符(TRICo-LBD)学习方法,该方法为每个局部补丁学习三重共现二进制码。在包括图像补丁匹配、纹理分类、人脸识别和场景分类在内的四个不同视觉识别任务上的广泛实验结果表明,我们的 RI-LBD 和 TRICo-LBD 优于大多数现有的局部描述符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验