Suppr超能文献

单个酿酒酵母细胞的胞质pH值是耐乙酸能力的关键因素。

The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

作者信息

Fernández-Niño Miguel, Marquina Maribel, Swinnen Steve, Rodríguez-Porrata Boris, Nevoigt Elke, Ariño Joaquín

机构信息

Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany.

Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.

出版信息

Appl Environ Microbiol. 2015 Nov;81(22):7813-21. doi: 10.1128/AEM.02313-15. Epub 2015 Sep 4.

Abstract

It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.

摘要

最近的研究表明,同基因的酿酒酵母群体中的单个细胞在醋酸耐受性方面表现出变异性,这种变异性会影响该性状在群体水平上的定量表现。在本研究中,我们调查了醋酸耐受性的细胞间变异性是否可以通过在接触酸之前立即观察到的单个细胞胞质pH值的差异来解释。用CEN.PK113 - 7D菌株的细胞在含有96 mM醋酸(pH 4.5)的合成培养基中获得的结果表明,初始胞质pH与接触酸后胞质pH的下降之间存在直接相关性。此外,只有初始胞质pH较低且胞质pH下降不太严重的细胞才能增殖。在更耐酸的菌株MUCL 11987 - 9中也观察到了初始胞质pH与胞质pH下降之间的类似相关性。有趣的是,MUCL 11987 - 9群体中的一部分细胞显示出的初始胞质pH值低于在CEN.PK113 - 7D菌株细胞中检测到的最小胞质pH值;因此,这些细胞的胞质pH下降不太严重。尽管这可能部分解释了两种菌株在恢复增殖的细胞数量方面的差异,但观察到来自MUCL 11987 - 9菌株的所有细胞都能够增殖,而与它们的初始胞质pH无关。因此,其他因素也必须参与MUCL 11987 - 9细胞更强的耐受胞质pH大幅下降的能力。

相似文献

1
The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.
Appl Environ Microbiol. 2015 Nov;81(22):7813-21. doi: 10.1128/AEM.02313-15. Epub 2015 Sep 4.
6
Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature.
Appl Microbiol Biotechnol. 2022 Jan;106(1):383-399. doi: 10.1007/s00253-021-11730-z. Epub 2021 Dec 16.
10
Modification of Saccharomyces cerevisiae thermotolerance following rapid exposure to acid stress.
Int J Food Microbiol. 1998 Jul 21;42(3):225-30. doi: 10.1016/s0168-1605(98)00089-0.

引用本文的文献

2
Methods for studying microbial acid stress responses: from molecules to populations.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae015.
3
The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae016.
4
Adaptive responses of yeast strains tolerant to acidic pH, acetate, and supraoptimal temperature.
Appl Microbiol Biotechnol. 2023 Jun;107(12):4051-4068. doi: 10.1007/s00253-023-12556-7. Epub 2023 May 13.
5
Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae.
Nat Commun. 2022 Apr 7;13(1):1886. doi: 10.1038/s41467-022-29560-6.
6
Whole-Genome Transformation of Yeast Promotes Rare Host Mutations with a Single Causative SNP Enhancing Acetic Acid Tolerance.
Mol Cell Biol. 2022 Apr 21;42(4):e0056021. doi: 10.1128/mcb.00560-21. Epub 2022 Mar 21.
7
Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature.
Appl Microbiol Biotechnol. 2022 Jan;106(1):383-399. doi: 10.1007/s00253-021-11730-z. Epub 2021 Dec 16.
9

本文引用的文献

1
Population heterogeneity and dynamics in starter culture and lag phase adaptation of the spoilage yeast Zygosaccharomyces bailii to weak acid preservatives.
Int J Food Microbiol. 2014 Jul 2;181(100):40-7. doi: 10.1016/j.ijfoodmicro.2014.04.017. Epub 2014 Apr 21.
3
Microbial mechanisms of tolerance to weak acid stress.
Front Microbiol. 2013 Dec 30;4:416. doi: 10.3389/fmicb.2013.00416. eCollection 2013.
4
Single-cell measurements of enzyme levels as a predictive tool for cellular fates during organic acid production.
Appl Environ Microbiol. 2013 Dec;79(24):7569-82. doi: 10.1128/AEM.01749-13. Epub 2013 Sep 13.
6
Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress.
Environ Microbiol. 2014 Jun;16(6):1729-40. doi: 10.1111/1462-2920.12243. Epub 2013 Sep 3.
7
Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii.
Int J Food Microbiol. 2013 Aug 16;166(1):126-34. doi: 10.1016/j.ijfoodmicro.2013.06.025. Epub 2013 Jul 2.
9
Yeast adaptation to weak acids prevents futile energy expenditure.
Front Microbiol. 2013 Jun 11;4:142. doi: 10.3389/fmicb.2013.00142. eCollection 2013.
10
Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass.
Biotechnol Bioeng. 2013 Oct;110(10):2616-23. doi: 10.1002/bit.24938. Epub 2013 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验