Suppr超能文献

一种用于癌症治疗和成像的具有高特定药物负载量的放射治疗诊断纳米颗粒。

A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging.

作者信息

Satterlee Andrew B, Yuan Hong, Huang Leaf

机构信息

Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA; UNC and NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27599, USA.

Biomedical Research Imaging Center, Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA.

出版信息

J Control Release. 2015 Nov 10;217:170-82. doi: 10.1016/j.jconrel.2015.08.048. Epub 2015 Sep 1.

Abstract

We have developed a theranostic nanoparticle delivering the model radionuclide (177)Lu based on the versatile lipid-calcium-phosphate (LCP) nanoparticle delivery platform. Characterization of (177)Lu-LCP has shown that radionuclide loading can be increased by several orders of magnitude without affecting the encapsulation efficiency or the morphology of (177)Lu-LCP, allowing consistency during fabrication and overcoming scale-up barriers typical of nanotherapeutics. The choice of (177)Lu as a model radionuclide has allowed in vivo anticancer therapy in addition to radiographic imaging via the dual decay modes of (177)Lu. Tumor accumulation of (177)Lu-LCP was measured using both SPECT and Cerenkov imaging modalities in live mice, and treatment with just one dose of (177)Lu-LCP showed significant in vivo tumor inhibition in two subcutaneous xenograft tumor models. Microenvironment and cytotoxicity studies suggest that (177)Lu-LCP inhibits tumor growth by causing apoptotic cell death via double-stranded DNA breaks while causing a remodeling of the tumor microenvironment to a more disordered and less malignant phenotype.

摘要

我们基于通用的脂质-磷酸钙(LCP)纳米颗粒递送平台,开发了一种递送模型放射性核素(177)Lu的诊疗纳米颗粒。对(177)Lu-LCP的表征表明,放射性核素负载量可提高几个数量级,而不会影响(177)Lu-LCP的包封效率或形态,从而在制造过程中保持一致性,并克服了纳米治疗药物典型的放大障碍。选择(177)Lu作为模型放射性核素,除了通过(177)Lu的双重衰变模式进行放射成像外,还可进行体内抗癌治疗。在活体小鼠中使用SPECT和切伦科夫成像模式测量了(177)Lu-LCP的肿瘤蓄积情况,仅用一剂(177)Lu-LCP治疗就在两种皮下异种移植肿瘤模型中显示出显著的体内肿瘤抑制作用。微环境和细胞毒性研究表明,(177)Lu-LCP通过双链DNA断裂导致凋亡性细胞死亡,同时使肿瘤微环境重塑为更无序、恶性程度更低的表型,从而抑制肿瘤生长。

相似文献

1
A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging.
J Control Release. 2015 Nov 10;217:170-82. doi: 10.1016/j.jconrel.2015.08.048. Epub 2015 Sep 1.
2
Chemoradiation therapy using cyclopamine-loaded liquid-lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles.
J Control Release. 2015 Mar 28;202:40-8. doi: 10.1016/j.jconrel.2015.01.031. Epub 2015 Jan 28.
3
Current and Future Theranostic Applications of the Lipid-Calcium-Phosphate Nanoparticle Platform.
Theranostics. 2016 Apr 27;6(7):918-29. doi: 10.7150/thno.14689. eCollection 2016.
5
Preclinical efficacy of hK2 targeted [Lu]hu11B6 for prostate cancer theranostics.
Theranostics. 2019 Apr 6;9(8):2129-2142. doi: 10.7150/thno.31179. eCollection 2019.
6
In vivo evaluation of PEGylated ⁶⁴Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT.
Eur J Nucl Med Mol Imaging. 2016 May;43(5):941-952. doi: 10.1007/s00259-015-3272-6. Epub 2015 Dec 8.
10
Proof of Therapeutic Efficacy of a Lu-Labeled Neurotensin Receptor 1 Antagonist in a Colon Carcinoma Xenograft Model.
J Nucl Med. 2017 Jun;58(6):936-941. doi: 10.2967/jnumed.116.185140. Epub 2017 Mar 2.

引用本文的文献

2
Developments in Lu-based radiopharmaceutical therapy and dosimetry.
Front Chem. 2023 Jul 31;11:1218670. doi: 10.3389/fchem.2023.1218670. eCollection 2023.
4
Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy.
Nanomaterials (Basel). 2020 Sep 7;10(9):1771. doi: 10.3390/nano10091771.
5
Nanoscale systems for local drug delivery.
Nano Today. 2019 Oct;28. doi: 10.1016/j.nantod.2019.100765. Epub 2019 Aug 26.
8
Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care.
ACS Nano. 2018 Jan 23;12(1):24-43. doi: 10.1021/acsnano.7b05108. Epub 2017 Dec 22.
9
Neutron-activatable radionuclide cancer therapy using graphene oxide nanoplatelets.
Nucl Med Biol. 2017 Sep;52:42-48. doi: 10.1016/j.nucmedbio.2017.05.009. Epub 2017 Jun 1.
10
Molecular Imaging in Nanotechnology and Theranostics.
Mol Imaging Biol. 2017 Jun;19(3):363-372. doi: 10.1007/s11307-017-1056-z.

本文引用的文献

2
Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model.
J Control Release. 2014 May 28;182:90-6. doi: 10.1016/j.jconrel.2014.03.016. Epub 2014 Mar 15.
3
Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases.
Biomaterials. 2014 May;35(16):4688-98. doi: 10.1016/j.biomaterials.2014.02.030. Epub 2014 Mar 6.
4
Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy.
ACS Nano. 2013 Nov 26;7(11):9896-904. doi: 10.1021/nn403606m. Epub 2013 Oct 3.
5
Combinational delivery of c-myc siRNA and nucleoside analogs in a single, synthetic nanocarrier for targeted cancer therapy.
Biomaterials. 2013 Nov;34(33):8459-68. doi: 10.1016/j.biomaterials.2013.07.050. Epub 2013 Aug 8.
7
A highly efficient synthetic vector: nonhydrodynamic delivery of DNA to hepatocyte nuclei in vivo.
ACS Nano. 2013 Jun 25;7(6):5376-84. doi: 10.1021/nn4012384. Epub 2013 May 10.
8
A bioengineered microenvironment to quantitatively measure the tumorigenic properties of cancer-associated fibroblasts in human prostate cancer.
Biomaterials. 2013 Jul;34(20):4777-85. doi: 10.1016/j.biomaterials.2013.03.005. Epub 2013 Apr 2.
9
Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy.
Biomaterials. 2013 Apr;34(13):3447-58. doi: 10.1016/j.biomaterials.2013.01.063. Epub 2013 Feb 4.
10
Post-translational modification and regulation of actin.
Curr Opin Cell Biol. 2013 Feb;25(1):30-8. doi: 10.1016/j.ceb.2012.10.009. Epub 2012 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验