Saha Prasenjit Prasad, Srivastava Shubhi, Kumar S K Praveen, Sinha Devanjan, D'Silva Patrick
From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka and.
the Department of Biochemistry, Karnatak University, Dharwad 580003, Karnataka, India.
J Biol Chem. 2015 Oct 23;290(43):25876-90. doi: 10.1074/jbc.M115.678508. Epub 2015 Sep 4.
Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.
铁硫(Fe-S)簇的生物合成是活细胞中不可或缺的过程。在哺乳动物线粒体中,Fe-S簇组装过程的初始步骤由NFS1-ISD11复合物协助,该复合物在Fe-S簇合成过程中将硫传递给支架蛋白ISCU。尽管ISD11是一种必需蛋白,但其在Fe-S簇生物合成中的细胞作用仍未明确。我们的研究绘制了属于假定螺旋1(苯丙氨酸-40)、螺旋3(亮氨酸-63、精氨酸-68、谷氨酰胺-69、异亮氨酸-72、酪氨酸-76)和C末端片段(亮氨酸-81、谷氨酸-84)的重要ISD11氨基酸残基,这些残基对体内Fe-S簇生物合成至关重要。重要的是,将这些保守的ISD11残基突变为丙氨酸会导致其与NFS1的相互作用受损,从而导致线粒体中NFS1的稳定性降低和聚集增强。由于与ISD11突变体的相互作用改变,NFS1和Isu1的水平显著降低,这影响了Fe-S簇的生物合成,导致电子传递链复合物(ETC)活性降低和线粒体呼吸作用减弱。在人类中,一种临床相关的ISD11突变(R68L)与线粒体遗传疾病COXPD19的发生有关。我们的研究结果表明,ISD11 R68A/R68L突变显示出与NFS1形成稳定亚复合物的亲和力降低,从而无法阻止NFS1聚集,导致Fe-S簇生物合成受损。主要受影响的机制是ETC复合物,其氧化还原特性受损,导致线粒体呼吸作用减弱。此外,R68L ISD11突变体表现出线粒体铁和活性氧的积累,导致线粒体功能障碍,这与COXPD19患者中观察到的表型相关。