Department of Chemical and Environmental Engineering, Yale University , 9 Hillhouse Avenue, New Haven, Connecticut 06520, United States.
Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
ACS Nano. 2015 Oct 27;9(10):10005-17. doi: 10.1021/acsnano.5b03578. Epub 2015 Sep 14.
Fully integrated transparent devices require versatile architectures for energy storage, yet typical battery electrodes are thick (20-100 μm) and composed of optically absorbent materials. Reducing the length scale of active materials, assembling them with a controllable method and minimizing electrode thickness should bring transparent batteries closer to reality. In this work, the rapid and controllable spin-spray layer-by-layer (SSLbL) method is used to generate high quality networks of 1D nanomaterials: single-walled carbon nanotubes (SWNT) and vanadium pentoxide (V2O5) nanowires for anode and cathode electrodes, respectively. These ultrathin films, deposited with ∼2 nm/bilayer precision are transparent when deposited on a transparent substrate (>87% transmittance) and electrochemically active in Li-ion cells. SSLbL-assembled ultrathin SWNT anodes and V2O5 cathodes exhibit reversible lithiation capacities of 23 and 7 μAh/cm(2), respectively at a current density of 5 μA/cm(2). When these electrodes are combined in a full cell, they retain ∼5 μAh/cm(2) capacity over 100 cycles, equivalent to the prelithiation capacity of the limiting V2O5 cathode. The SSLbL technique employed here to generate functional thin films is uniquely suited to the generation of transparent electrodes and offers a compelling path to realize the potential of fully integrated transparent devices.
全集成透明器件需要多功能的储能架构,然而典型的电池电极较厚(20-100μm)且由光吸收材料组成。减小活性材料的长度尺度,采用可控的方法将其组装,并最小化电极厚度,这应能使透明电池更加接近现实。在这项工作中,快速且可控的旋涂层层组装(SSLbL)方法被用于生成高质量的一维纳米材料网络:单壁碳纳米管(SWNT)和五氧化二钒(V2O5)纳米线分别作为阳极和阴极电极。这些超薄薄膜的沉积精度约为 2nm/双层,当沉积在透明基底上时具有透明性(>87%透光率),且在锂离子电池中具有电化学活性。SSLbL 组装的超薄 SWNT 阳极和 V2O5 阴极在 5μA/cm2的电流密度下分别表现出 23 和 7μAh/cm2的可逆嵌锂容量。当这些电极在全电池中组合使用时,它们在 100 次循环后仍保留约 5μAh/cm2的容量,相当于限制 V2O5 阴极的预嵌锂容量。这里采用的 SSLbL 技术来生成功能性薄膜非常适合于透明电极的生成,并为实现全集成透明器件的潜力提供了一条极具吸引力的途径。