Department of Physics, Electron Microscopy for Materials Science (EMAT), University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
Department of Solid State Sciences, Ghent University , Krijgslaan 281 S1, B-9000 Gent, Belgium.
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8055-8064. doi: 10.1021/acsami.6b12759. Epub 2017 Feb 21.
Vanadium pentoxide (VO) is proposed and investigated as a cathode material for lithium-ion (Li-ion) batteries. However, the dissolution of VO during the charge/discharge remains as an issue at the VO-electrolyte interface. In this work, we present a heterogeneous nanostructure with carbon nanotubes supported VO/titanium dioxide (TiO) multilayers as electrodes for thin-film Li-ion batteries. Atomic layer deposition of VO on carbon nanotubes provides enhanced Li storage capacity and high rate performance. An additional TiO layer leads to increased morphological stability and in return higher electrochemical cycling performance of VO/carbon nanotubes. The physical and chemical properties of TiO/VO/carbon nanotubes are characterized by cyclic voltammetry and charge/discharge measurements as well as electron microscopy. The detailed mechanism of the protective TiO layer to improve the electrochemical cycling stability of the VO is unveiled.
五氧化二钒(VO)被提议并研究作为锂离子(Li-ion)电池的阴极材料。然而,在 VO-电解质界面处,VO 在充电/放电过程中的溶解仍然是一个问题。在这项工作中,我们提出了一种具有碳纳米管支撑的 VO/二氧化钛(TiO)多层的异质纳米结构作为薄膜锂离子电池的电极。原子层沉积在碳纳米管上的 VO 提供了增强的 Li 存储容量和高倍率性能。额外的 TiO 层导致形态稳定性增加,从而 VO/碳纳米管的电化学循环性能更高。TiO/VO/碳纳米管的物理和化学性质通过循环伏安法和充放电测量以及电子显微镜进行了表征。揭示了 TiO 层的详细保护机制,以提高 VO 的电化学循环稳定性。