Suppr超能文献

使用工程化聚(ADP-核糖)聚合酶(PARP)变体-正交烟酰胺腺嘌呤二核苷酸(NAD+)类似物对鉴定PARP的直接蛋白质靶点

Identifying Direct Protein Targets of Poly-ADP-Ribose Polymerases (PARPs) Using Engineered PARP Variants-Orthogonal Nicotinamide Adenine Dinucleotide (NAD+) Analog Pairs.

作者信息

Carter-O'Connell Ian, Cohen Michael S

机构信息

Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon.

出版信息

Curr Protoc Chem Biol. 2015 Jun 1;7(2):121-39. doi: 10.1002/9780470559277.ch140259.

Abstract

Poly-ADP-ribose polymerases (PARPs) comprise a family of 17 distinct enzymes that catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to acceptor sites on protein targets. PARPs have been implicated in a number of essential signaling pathways regulating both normal cell function and pathophysiology. To understand the physiological role of each PARP family member in the cell we need to identify the direct targets for each unique PARP in a cellular context. PARP-family member-specific target identification is challenging because of their shared catalytic mechanism and functional redundancy. To address this challenge, we have engineered a PARP variant that efficiently uses an orthogonal NAD+ analog, an analog that endogenous PARPs cannot use, as a substrate for ADP-ribosylation. The protocols in this unit describe a general procedure for using engineered PARP variants-orthogonal NAD+ analog pairs for labeling and identifying the direct targets of the poly-subfamily of PARPs (PARPs 1-3, 5, and 6).

摘要

聚(ADP - 核糖)聚合酶(PARP)由17种不同的酶组成,这些酶催化将ADP - 核糖从烟酰胺腺嘌呤二核苷酸(NAD +)转移到蛋白质靶标的受体位点。PARP参与了许多调节正常细胞功能和病理生理学的重要信号通路。为了了解每个PARP家族成员在细胞中的生理作用,我们需要在细胞环境中确定每个独特PARP的直接靶标。由于PARP家族成员具有共同的催化机制和功能冗余性,因此特异性鉴定PARP家族成员的靶标具有挑战性。为了应对这一挑战,我们设计了一种PARP变体,该变体能够有效地使用一种正交NAD +类似物(一种内源性PARP无法使用的类似物)作为ADP - 核糖基化的底物。本单元中的方案描述了使用工程化PARP变体 - 正交NAD +类似物对标记和鉴定PARP多亚家族(PARP 1 - 3、5和6)直接靶标的一般程序。

相似文献

2
Using Clickable NAD Analogs to Label Substrate Proteins of PARPs.
Methods Mol Biol. 2017;1608:95-109. doi: 10.1007/978-1-4939-6993-7_8.
3
Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14).
ACS Chem Biol. 2018 Oct 19;13(10):2841-2848. doi: 10.1021/acschembio.8b00567. Epub 2018 Sep 28.
4
Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP.
Methods Mol Biol. 2018;1813:371-387. doi: 10.1007/978-1-4939-8588-3_25.
5
Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation.
Science. 2016 Jul 1;353(6294):45-50. doi: 10.1126/science.aaf7865. Epub 2016 Jun 2.
6
Mechanisms governing PARP expression, localization, and activity in cells.
Crit Rev Biochem Mol Biol. 2020 Dec;55(6):541-554. doi: 10.1080/10409238.2020.1818686. Epub 2020 Sep 23.
8
Chemical genetic methodologies for identifying protein substrates of PARPs.
Trends Biochem Sci. 2022 May;47(5):390-402. doi: 10.1016/j.tibs.2021.07.002. Epub 2021 Aug 5.
9
Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases.
J Am Chem Soc. 2010 Jul 14;132(27):9363-72. doi: 10.1021/ja101588r.
10
PARPs and the DNA damage response.
Carcinogenesis. 2012 Aug;33(8):1433-40. doi: 10.1093/carcin/bgs132. Epub 2012 Mar 19.

引用本文的文献

1
PARP1 as an Epigenetic Modulator: Implications for the Regulation of Host-Viral Dynamics.
Pathogens. 2024 Jan 30;13(2):131. doi: 10.3390/pathogens13020131.
2
Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation.
Mass Spectrom Rev. 2024 Mar-Apr;43(2):289-326. doi: 10.1002/mas.21811. Epub 2022 Sep 27.
3
Identification of PARP12 Inhibitors By Virtual Screening and Molecular Dynamics Simulations.
Front Pharmacol. 2022 Aug 9;13:847499. doi: 10.3389/fphar.2022.847499. eCollection 2022.
4
Role of mono-ADP-ribosylation histone modification (Review).
Exp Ther Med. 2021 Jun;21(6):577. doi: 10.3892/etm.2021.10009. Epub 2021 Mar 31.
5
ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function.
Nucleic Acids Res. 2021 Apr 19;49(7):3634-3650. doi: 10.1093/nar/gkab136.
7
Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes.
SLAS Discov. 2020 Mar;25(3):241-252. doi: 10.1177/2472555219883623. Epub 2019 Dec 19.
9
Detecting Protein ADP-Ribosylation Using a Clickable Aminooxy Probe.
Methods Mol Biol. 2017;1608:71-77. doi: 10.1007/978-1-4939-6993-7_6.
10
ADP-ribosylation: new facets of an ancient modification.
FEBS J. 2017 Sep;284(18):2932-2946. doi: 10.1111/febs.14078. Epub 2017 Apr 26.

本文引用的文献

1
Family-wide analysis of poly(ADP-ribose) polymerase activity.
Nat Commun. 2014 Jul 21;5:4426. doi: 10.1038/ncomms5426.
3
Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells.
J Proteome Res. 2014 Aug 1;13(8):3510-22. doi: 10.1021/pr401032q. Epub 2014 Jun 24.
4
Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets.
J Am Chem Soc. 2014 Apr 9;136(14):5201-4. doi: 10.1021/ja412897a. Epub 2014 Mar 26.
5
ARTD2 activity is stimulated by RNA.
Nucleic Acids Res. 2014 Apr;42(8):5072-82. doi: 10.1093/nar/gku131. Epub 2014 Feb 8.
6
Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses.
Mol Cell. 2013 Oct 24;52(2):272-85. doi: 10.1016/j.molcel.2013.08.026. Epub 2013 Sep 19.
7
Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome.
Nat Methods. 2013 Oct;10(10):981-4. doi: 10.1038/nmeth.2603. Epub 2013 Aug 18.
10
Structural basis and selectivity of tankyrase inhibition by a Wnt signaling inhibitor WIKI4.
PLoS One. 2013 Jun 6;8(6):e65404. doi: 10.1371/journal.pone.0065404. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验