Gene Center, Department of Biochemistry, University of Munich, Munich, Germany.
Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
Nat Struct Mol Biol. 2015 Oct;22(10):767-73. doi: 10.1038/nsmb.3086. Epub 2015 Sep 7.
The signal recognition particle (SRP) recognizes signal sequences of nascent polypeptides and targets ribosome-nascent chain complexes to membrane translocation sites. In eukaryotes, translating ribosomes are slowed down by the Alu domain of SRP to allow efficient targeting. In prokaryotes, however, little is known about the structure and function of Alu domain-containing SRPs. Here, we report a complete molecular model of SRP from the Gram-positive bacterium Bacillus subtilis, based on cryo-EM. The SRP comprises two subunits, 6S RNA and SRP54 or Ffh, and it facilitates elongation slowdown similarly to its eukaryotic counterpart. However, protein contacts with the small ribosomal subunit observed for the mammalian Alu domain are substituted in bacteria by RNA-RNA interactions of 6S RNA with the α-sarcin-ricin loop and helices H43 and H44 of 23S rRNA. Our findings provide a structural basis for cotranslational targeting and RNA-driven elongation arrest in prokaryotes.
信号识别颗粒 (SRP) 识别新生多肽的信号序列,并将核糖体-新生链复合物靶向到膜易位位点。在真核生物中,SRP 的 Alu 结构域会使正在翻译的核糖体减速,从而实现有效的靶向。然而,关于含有 Alu 结构域的 SRP 在原核生物中的结构和功能,我们知之甚少。在这里,我们基于 cryo-EM 报道了来自革兰氏阳性细菌枯草芽孢杆菌的完整的 SRP 分子模型。SRP 由 6S RNA 和 SRP54 或 Ffh 两个亚基组成,它类似于其真核对应物一样促进延伸减速。然而,在哺乳动物的 Alu 结构域中观察到的与小核糖体亚基的蛋白质接触,在细菌中被 6S RNA 与 23S rRNA 的α-假单胞菌素-蓖麻毒素环以及 H43 和 H44 螺旋的 RNA-RNA 相互作用所取代。我们的研究结果为原核生物中的共翻译靶向和 RNA 驱动的延伸阻滞提供了结构基础。