Suppr超能文献

哺乳动物信号识别颗粒Alu结构域的分层组装。

Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.

作者信息

Weichenrieder O, Stehlin C, Kapp U, Birse D E, Timmins P A, Strub K, Cusack S

机构信息

European Molecular Biology Laboratory, Grenoble Outstation, France.

出版信息

RNA. 2001 May;7(5):731-40. doi: 10.1017/s1355838201010160.

Abstract

The mammalian signal recognition particle (SRP) catalytically promotes cotranslational translocation of signal sequence containing proteins across the endoplasmic reticulum membrane. While the S-domain of SRP binds the N-terminal signal sequence on the nascent polypeptide, the Alu domain of SRP temporarily interferes with the ribosomal elongation cycle until the translocation pore in the membrane is correctly engaged. Here we present biochemical and biophysical evidence for a hierarchical assembly pathway of the SRP Alu domain. The proteins SRP9 and SRP14 first heterodimerize and then initially bind to the Alu RNA 5' domain. This creates the binding site for the Alu RNA 3' domain. Alu RNA then undergoes a large conformational change with the flexibly linked 3' domain folding back by 180 degrees onto the 5' domain complex to form the final compact Alu ribonucleoprotein particle (Alu RNP). We discuss the possible mechanistic consequences of the likely reversibility of this final step with reference to translational regulation by the SRP Alu domain and with reference to the structurally similar Alu RNP retroposition intermediates derived from Alu elements in genomic DNA.

摘要

哺乳动物信号识别颗粒(SRP)催化促进含信号序列的蛋白质在内质网膜上的共翻译转运。当SRP的S结构域结合新生多肽上的N端信号序列时,SRP的Alu结构域会暂时干扰核糖体延伸循环,直到膜上的转运孔正确对接。在此,我们提供了SRP Alu结构域分级组装途径的生化和生物物理证据。蛋白质SRP9和SRP14首先形成异二聚体,然后最初结合到Alu RNA的5'结构域。这为Alu RNA的3'结构域创造了结合位点。然后Alu RNA经历一个大的构象变化,灵活连接的3'结构域向后折叠180度,与5'结构域复合物结合,形成最终紧密的Alu核糖核蛋白颗粒(Alu RNP)。我们参照SRP Alu结构域的翻译调控以及基因组DNA中源自Alu元件的结构相似的Alu RNP逆转座中间体,讨论了这最后一步可能的可逆性所带来的潜在机制后果。

相似文献

1
Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.
RNA. 2001 May;7(5):731-40. doi: 10.1017/s1355838201010160.
2
Structure and assembly of the Alu domain of the mammalian signal recognition particle.
Nature. 2000 Nov 9;408(6809):167-73. doi: 10.1038/35041507.
3
The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14.
EMBO J. 1997 Jul 1;16(13):3757-66. doi: 10.1093/emboj/16.13.3757.
6
Retrotransposition and Crystal Structure of an Alu RNP in the Ribosome-Stalling Conformation.
Mol Cell. 2015 Dec 3;60(5):715-727. doi: 10.1016/j.molcel.2015.10.003. Epub 2015 Nov 12.
7
Structure of SRP14 from the Schizosaccharomyces pombe signal recognition particle.
Acta Crystallogr D Biol Crystallogr. 2009 May;65(Pt 5):421-33. doi: 10.1107/S0907444909005484. Epub 2009 Apr 18.

引用本文的文献

1
Identification of a minimal Alu domain required for retrotransposition.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf526.
2
Identification of a minimal domain required for retrotransposition.
bioRxiv. 2024 Dec 16:2024.12.16.628748. doi: 10.1101/2024.12.16.628748.
3
The role of SRP9/SRP14 in regulating Alu RNA.
RNA Biol. 2024 Jan;21(1):1-12. doi: 10.1080/15476286.2024.2430817. Epub 2024 Nov 19.
4
Retrotransposon life cycle and its impacts on cellular responses.
RNA Biol. 2024 Jan;21(1):11-27. doi: 10.1080/15476286.2024.2409607. Epub 2024 Oct 13.
5
Nuclear SRP9/SRP14 heterodimer transcriptionally regulates 7SL and BC200 RNA expression.
RNA. 2023 Aug;29(8):1185-1200. doi: 10.1261/rna.079649.123. Epub 2023 May 8.
6
Transposon clusters as substrates for aberrant splice-site activation.
RNA Biol. 2021 Mar;18(3):354-367. doi: 10.1080/15476286.2020.1805909. Epub 2020 Sep 23.
7
Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions.
Nat Struct Mol Biol. 2015 Oct;22(10):767-73. doi: 10.1038/nsmb.3086. Epub 2015 Sep 7.
8
RNA gymnastics in mammalian signal recognition particle assembly.
RNA Biol. 2014;11(11):1330-4. doi: 10.1080/15476286.2014.996457.
9
Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation.
RNA. 2014 Dec;20(12):1955-62. doi: 10.1261/rna.047209.114. Epub 2014 Oct 21.
10
Structure of the complete bacterial SRP Alu domain.
Nucleic Acids Res. 2014 Oct 29;42(19):12284-94. doi: 10.1093/nar/gku883. Epub 2014 Sep 30.

本文引用的文献

1
Structure and assembly of the Alu domain of the mammalian signal recognition particle.
Nature. 2000 Nov 9;408(6809):167-73. doi: 10.1038/35041507.
2
Nuclear export of yeast signal recognition particle lacking Srp54p by the Xpo1p/Crm1p NES-dependent pathway.
Curr Biol. 2000 Oct 19;10(20):1256-64. doi: 10.1016/s0960-9822(00)00743-0.
3
Elongation arrest is a physiologically important function of signal recognition particle.
EMBO J. 2000 Aug 1;19(15):4164-74. doi: 10.1093/emboj/19.15.4164.
4
5
Assembly of archaeal signal recognition particle from recombinant components.
Nucleic Acids Res. 2000 Mar 15;28(6):1365-73. doi: 10.1093/nar/28.6.1365.
6
Crystal structure of the ribonucleoprotein core of the signal recognition particle.
Science. 2000 Feb 18;287(5456):1232-9. doi: 10.1126/science.287.5456.1232.
7
Signal recognition particle components in the nucleolus.
Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):55-60. doi: 10.1073/pnas.97.1.55.
8
The 2 A structure of helix 6 of the human signal recognition particle RNA.
Structure. 1999 Nov 15;7(11):1345-52. doi: 10.1016/s0969-2126(00)80024-6.
10
Accurate 3' end processing and adenylation of human signal recognition particle RNA and alu RNA in vitro.
J Biol Chem. 1998 Dec 25;273(52):35023-31. doi: 10.1074/jbc.273.52.35023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验