EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland.
Nat Commun. 2023 Feb 25;14(1):1095. doi: 10.1038/s41467-023-36742-3.
Our understanding of protein synthesis has been conceptualised around the structure and function of the bacterial ribosome. This complex macromolecular machine is the target of important antimicrobial drugs, an integral line of defence against infectious diseases. Here, we describe how open access to cryo-electron microscopy facilities combined with bespoke user support enabled structural determination of the translating ribosome from Escherichia coli at 1.55 Å resolution. The obtained structures allow for direct determination of the rRNA sequence to identify ribosome polymorphism sites in the E. coli strain used in this study and enable interpretation of the ribosomal active and peripheral sites at unprecedented resolution. This includes scarcely populated chimeric hybrid states of the ribosome engaged in several tRNA translocation steps resolved at ~2 Å resolution. The current map not only improves our understanding of protein synthesis but also allows for more precise structure-based drug design of antibiotics to tackle rising bacterial resistance.
我们对蛋白质合成的理解是围绕细菌核糖体的结构和功能来构建的。这个复杂的大分子机器是重要抗菌药物的靶点,也是对抗传染病的重要防线。在这里,我们描述了如何通过开放获取低温电子显微镜设施,并结合定制的用户支持,以 1.55Å 的分辨率确定大肠杆菌翻译核糖体的结构。所获得的结构允许直接确定 rRNA 序列,以识别本研究中使用的大肠杆菌菌株中的核糖体多态性位点,并以前所未有的分辨率解释核糖体活性和外围位点。这包括在几个 tRNA 易位步骤中参与的、以约 2Å 的分辨率解析的稀有杂交状态的核糖体。目前的图谱不仅提高了我们对蛋白质合成的理解,而且还允许更精确的基于结构的抗生素药物设计,以应对不断上升的细菌耐药性。