Suppr超能文献

可逆性蛋白质组氨酸磷酸化作为心血管疾病细胞内信号的改变

Alterations in reversible protein histidine phosphorylation as intracellular signals in cardiovascular disease.

作者信息

Wieland Thomas, Attwood Paul V

机构信息

Institute for Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University , Mannheim, Germany.

School of Chemistry and Biochemistry, The University of Western Australia , Crawley, Australia.

出版信息

Front Pharmacol. 2015 Aug 21;6:173. doi: 10.3389/fphar.2015.00173. eCollection 2015.

Abstract

Reversible phosphorylation of amino acid side chains in proteins is a frequently used mechanism in cellular signal transduction and alterations of such phosphorylation patterns are very common in cardiovascular diseases. They reflect changes in the activities of the protein kinases and phosphatases involving signaling pathways. Phosphorylation of serine, threonine, and tyrosine residues has been extensively investigated in vertebrates, whereas reversible histidine phosphorylation, a well-known regulatory signal in lower organisms, has been largely neglected as it has been generally assumed that histidine phosphorylation is of minor importance in vertebrates. More recently, it has become evident that the nucleoside diphosphate kinase isoform B (NDPK-B), an ubiquitously expressed enzyme involved in nucleotide metabolism, and a highly specific phosphohistidine phosphatase (PHP) form a regulatory histidine protein kinase/phosphatase system in mammals. At least three well defined substrates of NDPK-B are known: The β-subunit of heterotrimeric G-proteins (Gβ), the intermediate conductance potassium channel SK4 and the Ca(2+) conducting TRP channel family member, TRPV5. In each of these proteins the phosphorylation of a specific histidine residue regulates cellular signal transduction or channel activity. This article will therefore summarize our current knowledge on protein histidine phosphorylation and highlight its relevance for cardiovascular physiology and pathophysiology.

摘要

蛋白质中氨基酸侧链的可逆磷酸化是细胞信号转导中常用的机制,这种磷酸化模式的改变在心血管疾病中非常常见。它们反映了涉及信号通路的蛋白激酶和磷酸酶活性的变化。丝氨酸、苏氨酸和酪氨酸残基的磷酸化在脊椎动物中已得到广泛研究,而可逆的组氨酸磷酸化,作为低等生物中一种著名的调节信号,在很大程度上被忽视了,因为人们普遍认为组氨酸磷酸化在脊椎动物中不太重要。最近,很明显核苷二磷酸激酶同工型B(NDPK-B),一种参与核苷酸代谢的普遍表达的酶,和一种高度特异性的磷酸组氨酸磷酸酶(PHP)在哺乳动物中形成了一个调节性组氨酸蛋白激酶/磷酸酶系统。已知NDPK-B至少有三种明确的底物:异源三聚体G蛋白(Gβ)的β亚基、中等电导钾通道SK4和Ca(2+)传导TRP通道家族成员TRPV5。在这些蛋白质中的每一种中,特定组氨酸残基的磷酸化调节细胞信号转导或通道活性。因此,本文将总结我们目前关于蛋白质组氨酸磷酸化的知识,并强调其对心血管生理和病理生理的相关性。

相似文献

1
Alterations in reversible protein histidine phosphorylation as intracellular signals in cardiovascular disease.
Front Pharmacol. 2015 Aug 21;6:173. doi: 10.3389/fphar.2015.00173. eCollection 2015.
2
Nucleoside diphosphate kinase as protein histidine kinase.
Naunyn Schmiedebergs Arch Pharmacol. 2015 Feb;388(2):153-60. doi: 10.1007/s00210-014-1003-3. Epub 2014 Jun 25.
3
Reversible phosphorylation of histidine residues in proteins from vertebrates.
Sci Signal. 2009 Mar 10;2(61):pe13. doi: 10.1126/scisignal.261pe13.
4
The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases.
Lab Invest. 2018 Mar;98(3):283-290. doi: 10.1038/labinvest.2017.125. Epub 2017 Dec 4.
7
Interaction of nucleoside diphosphate kinase B with heterotrimeric G protein betagamma dimers: consequences on G protein activation and stability.
Naunyn Schmiedebergs Arch Pharmacol. 2007 Feb;374(5-6):373-83. doi: 10.1007/s00210-006-0126-6. Epub 2007 Jan 3.
8
Nucleoside diphosphate kinase B-activated intermediate conductance potassium channels are critical for neointima formation in mouse carotid arteries.
Arterioscler Thromb Vasc Biol. 2015 Aug;35(8):1852-61. doi: 10.1161/ATVBAHA.115.305881. Epub 2015 Jun 18.
10
A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase.
Eur J Biochem. 1995 Nov 15;234(1):200-7. doi: 10.1111/j.1432-1033.1995.200_c.x.

引用本文的文献

2
Changes to Urinary Proteome in High-Fat-Diet Mice.
Biomolecules. 2022 Oct 26;12(11):1569. doi: 10.3390/biom12111569.
3
A global map of associations between types of protein posttranslational modifications and human genetic diseases.
iScience. 2021 Jul 30;24(8):102917. doi: 10.1016/j.isci.2021.102917. eCollection 2021 Aug 20.
5
NME/NM23/NDPK and Histidine Phosphorylation.
Int J Mol Sci. 2020 Aug 14;21(16):5848. doi: 10.3390/ijms21165848.
6
The Potential Functional Roles of NME1 Histidine Kinase Activity in Neuroblastoma Pathogenesis.
Int J Mol Sci. 2020 May 7;21(9):3319. doi: 10.3390/ijms21093319.
8
Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation.
EMBO J. 2019 Oct 4;38(21):e100847. doi: 10.15252/embj.2018100847. Epub 2019 Aug 21.
9
Natural Products Containing 'Rare' Organophosphorus Functional Groups.
Molecules. 2019 Feb 28;24(5):866. doi: 10.3390/molecules24050866.
10
Targeting altered Nme heterooligomerization in disease?
Oncotarget. 2017 Nov 27;9(2):1492-1493. doi: 10.18632/oncotarget.22716. eCollection 2018 Jan 5.

本文引用的文献

1
Nucleoside diphosphate kinase B-activated intermediate conductance potassium channels are critical for neointima formation in mouse carotid arteries.
Arterioscler Thromb Vasc Biol. 2015 Aug;35(8):1852-61. doi: 10.1161/ATVBAHA.115.305881. Epub 2015 Jun 18.
3
Microbial protein-tyrosine kinases.
J Biol Chem. 2014 Apr 4;289(14):9463-72. doi: 10.1074/jbc.R113.520015. Epub 2014 Feb 19.
4
Regulation of the epithelial Ca²⁺ channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1.
Mol Biol Cell. 2014 Apr;25(8):1244-50. doi: 10.1091/mbc.E13-04-0180. Epub 2014 Feb 12.
5
Histidine kinases from bacteria to humans.
Biochem Soc Trans. 2013 Aug;41(4):1023-8. doi: 10.1042/BST20130019.
6
A pan-specific antibody for direct detection of protein histidine phosphorylation.
Nat Chem Biol. 2013 Jul;9(7):416-21. doi: 10.1038/nchembio.1259. Epub 2013 May 26.
9
Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family.
ACS Chem Biol. 2012 Jan 20;7(1):44-51. doi: 10.1021/cb200445w. Epub 2011 Dec 9.
10
Small-conductance Ca2+-activated K+ channels: form and function.
Annu Rev Physiol. 2012;74:245-69. doi: 10.1146/annurev-physiol-020911-153336. Epub 2011 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验