Suppr超能文献

通过非天然氨基酸掺入和(19)F-NMR揭示的抑制蛋白构象和功能的磷酸选择性机制

Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR.

作者信息

Yang Fan, Yu Xiao, Liu Chuan, Qu Chang-Xiu, Gong Zheng, Liu Hong-Da, Li Fa-Hui, Wang Hong-Mei, He Dong-Fang, Yi Fan, Song Chen, Tian Chang-Lin, Xiao Kun-Hong, Wang Jiang-Yun, Sun Jin-Peng

机构信息

Laboratory of Quantum Biophysics and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, China.

Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China.

出版信息

Nat Commun. 2015 Sep 8;6:8202. doi: 10.1038/ncomms9202.

Abstract

Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ((19)F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 'reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by (19)F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors.

摘要

特定的抑制蛋白构象与不同的下游效应器相偶联,这是许多G蛋白偶联受体(GPCR)功能的基础。在此,我们利用非天然氨基酸掺入和氟-19核磁共振((19)F-NMR)光谱法证明,不同的受体磷酸条形码被转化为特定的β-抑制蛋白-1构象并指导选择性信号传导。β-抑制蛋白-1通过其磷酸盐结合凹面“读取”受体磷酸化C末端的信息,并且(19)F-NMR揭示了不同的磷酸相互作用模式。虽然所有功能性磷酸肽都与一个共同的磷酸盐结合位点相互作用并诱导指状环和中环的运动,但不同的磷酸相互作用模式会诱导β-抑制蛋白-1的不同结构状态,这些状态与不同的抑制蛋白功能相偶联。只有网格蛋白能够识别并稳定GRK2特异性β-抑制蛋白-1构象。所确定的抑制蛋白构象的受体磷酸选择性机制以及抑制蛋白中多个磷酸盐结合位点的间距,使抑制蛋白能够识别众多GPCR的大量磷酸化状态,这有助于受体的功能多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39d5/4569848/7f4c9881bea0/ncomms9202-f1.jpg

相似文献

2
Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.
Mol Pharmacol. 2017 Sep;92(3):201-210. doi: 10.1124/mol.116.107839. Epub 2017 Feb 28.
5
Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):7055-60. doi: 10.1073/pnas.1118359109. Epub 2012 Apr 16.
6
β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.
7
Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5160-8. doi: 10.1073/pnas.1508836112. Epub 2015 Aug 31.
8
β-arrestins and G protein-coupled receptor trafficking.
Handb Exp Pharmacol. 2014;219:173-86. doi: 10.1007/978-3-642-41199-1_9.
10
GRK2-mediated receptor phosphorylation and Mdm2-mediated β-arrestin2 ubiquitination drive clathrin-mediated endocytosis of G protein-coupled receptors.
Biochem Biophys Res Commun. 2020 Dec 10;533(3):383-390. doi: 10.1016/j.bbrc.2020.09.030. Epub 2020 Sep 19.

引用本文的文献

1
The function of GPCRs in different bone cells.
Int J Biol Sci. 2025 Jul 24;21(11):4736-4761. doi: 10.7150/ijbs.113585. eCollection 2025.
4
Effect of phosphorylation barcodes on arrestin binding to a chemokine receptor.
Nature. 2025 May 21. doi: 10.1038/s41586-025-09024-9.
6
Genetic Code Expansion: Recent Developments and Emerging Applications.
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
7
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
8
Molecular mechanism of β-arrestin-2 pre-activation by phosphatidylinositol 4,5-bisphosphate.
EMBO Rep. 2024 Oct;25(10):4190-4205. doi: 10.1038/s44319-024-00239-x. Epub 2024 Sep 6.
9
Arrestins: A Small Family of Multi-Functional Proteins.
Int J Mol Sci. 2024 Jun 6;25(11):6284. doi: 10.3390/ijms25116284.
10
Beneath the surface: endosomal GPCR signaling.
Trends Biochem Sci. 2024 Jun;49(6):520-531. doi: 10.1016/j.tibs.2024.03.006. Epub 2024 Apr 19.

本文引用的文献

1
Dual agonist occupancy of AT1-R-α2C-AR heterodimers results in atypical Gs-PKA signaling.
Nat Chem Biol. 2015 Apr;11(4):271-9. doi: 10.1038/nchembio.1766. Epub 2015 Feb 23.
2
Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor:Gq complex.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1601-6. doi: 10.1073/pnas.1414618112. Epub 2015 Jan 20.
3
Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer.
Nat Chem Biol. 2015 Feb;11(2):134-40. doi: 10.1038/nchembio.1711. Epub 2014 Dec 15.
4
Crystal structure of a common GPCR-binding interface for G protein and arrestin.
Nat Commun. 2014 Sep 10;5:4801. doi: 10.1038/ncomms5801.
6
Visualization of arrestin recruitment by a G-protein-coupled receptor.
Nature. 2014 Aug 14;512(7513):218-222. doi: 10.1038/nature13430. Epub 2014 Jun 22.
9
Targeted disruption of β-arrestin 2-mediated signaling pathways by aptamer chimeras leads to inhibition of leukemic cell growth.
PLoS One. 2014 Apr 15;9(4):e93441. doi: 10.1371/journal.pone.0093441. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验