Suppr超能文献

β-抑制蛋白生物传感器揭示了一个快速的、受体依赖性的激活/失活循环。

β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.

作者信息

Nuber Susanne, Zabel Ulrike, Lorenz Kristina, Nuber Andreas, Milligan Graeme, Tobin Andrew B, Lohse Martin J, Hoffmann Carsten

机构信息

Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.

Rudolf Virchow Center, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.

出版信息

Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.

Abstract

(β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor-β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling.

摘要

(β-)抑制蛋白是G蛋白偶联受体(GPCR)的重要调节因子。它们与活化的、磷酸化的GPCR结合,从而阻断向G蛋白的“经典”信号传导,通过与网格蛋白机制相互作用触发GPCR的内化,并通过“非经典”途径介导信号传导。除了与视杆和视锥光感受器结合的两种视觉抑制蛋白(分别称为抑制蛋白1和抑制蛋白4)外,只有两种(非视觉)β-抑制蛋白(β-抑制蛋白1和β-抑制蛋白2,也称为抑制蛋白2和抑制蛋白3),它们调节数百种不同的(非视觉)GPCR。这些蛋白与GPCR的结合通常需要受体的活性形式及其被G蛋白偶联受体激酶(GRK)磷酸化。受体或其羧基末端的结合以及某些截短会诱导(β-)抑制蛋白的活性构象,最近通过X射线晶体学已解析出这些构象。在这里,我们使用一系列基于荧光共振能量转移(FRET)的β-抑制蛋白2生物传感器,实时研究了β-抑制蛋白与GPCR的相互作用以及在活的人类细胞中β-抑制蛋白的构象变化。我们观察到在受体与β-抑制蛋白2相互作用后迅速发生的β-抑制蛋白2构象变化的受体特异性模式。去除激动剂后,这些变化持续的时间比直接的受体相互作用更长。我们的数据表明GPCR与β-抑制蛋白之间存在快速、受体类型特异性的两步结合和激活过程。它们进一步表明β-抑制蛋白从受体解离后仍保持活性,使其能够留在细胞表面并可能独立发出信号。因此,GPCR触发了β-抑制蛋白快速、受体特异性的激活/失活循环,从而允许其进行活性信号传导。

相似文献

1
β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.
3
The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
Nature. 2016 Mar 31;531(7596):665-8. doi: 10.1038/nature17154. Epub 2016 Mar 23.
4
Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide.
Nature. 2013 May 2;497(7447):137-41. doi: 10.1038/nature12120. Epub 2013 Apr 21.
5
Arrestin interactions with G protein-coupled receptors.
Handb Exp Pharmacol. 2014;219:15-56. doi: 10.1007/978-3-642-41199-1_2.
7
Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins.
J Biol Chem. 2018 Jan 19;293(3):876-892. doi: 10.1074/jbc.M117.813139. Epub 2017 Nov 16.
8
β-Arrestins and G protein-coupled receptor trafficking.
Methods Enzymol. 2013;521:91-108. doi: 10.1016/B978-0-12-391862-8.00005-3.
9
beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
J Biol Chem. 2006 Jan 13;281(2):1261-73. doi: 10.1074/jbc.M506576200. Epub 2005 Nov 9.
10
Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9988-93. doi: 10.1073/pnas.0804246105. Epub 2008 Jul 11.

引用本文的文献

2
Membrane phosphoinositides allosterically tune β-arrestin dynamics to facilitate GPCR core engagement.
bioRxiv. 2025 Jun 8:2025.06.06.658200. doi: 10.1101/2025.06.06.658200.
3
Isoprenaline shows unique kinase dependencies in stimulating βAR-β-arrestin2 interaction compared to endogenous catecholamines.
Mol Pharmacol. 2025 Jun;107(6):100041. doi: 10.1016/j.molpha.2025.100041. Epub 2025 Apr 21.
4
Constitutive activity of an atypical chemokine receptor revealed by inverse agonistic nanobodies.
bioRxiv. 2024 Nov 4:2024.11.04.621790. doi: 10.1101/2024.11.04.621790.
5
Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors.
Mol Pharmacol. 2024 Aug 16;106(3):129-144. doi: 10.1124/molpharm.124.000949.
6
Arrestins: A Small Family of Multi-Functional Proteins.
Int J Mol Sci. 2024 Jun 6;25(11):6284. doi: 10.3390/ijms25116284.
7
Adrenoceptor Desensitization: Current Understanding of Mechanisms.
Pharmacol Rev. 2024 May 2;76(3):358-387. doi: 10.1124/pharmrev.123.000831.
8
Computational drug development for membrane protein targets.
Nat Biotechnol. 2024 Feb;42(2):229-242. doi: 10.1038/s41587-023-01987-2. Epub 2024 Feb 15.
9
Investigating G-protein coupled receptor signalling with light-emitting biosensors.
Front Physiol. 2024 Jan 8;14:1310197. doi: 10.3389/fphys.2023.1310197. eCollection 2023.
10
Ligand recognition and G-protein coupling of trace amine receptor TAAR1.
Nature. 2023 Dec;624(7992):672-681. doi: 10.1038/s41586-023-06804-z. Epub 2023 Nov 7.

本文引用的文献

1
The conformational signature of β-arrestin2 predicts its trafficking and signalling functions.
Nature. 2016 Mar 31;531(7596):665-8. doi: 10.1038/nature17154. Epub 2016 Mar 23.
2
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.
4
Arrestin interactions with G protein-coupled receptors.
Handb Exp Pharmacol. 2014;219:15-56. doi: 10.1007/978-3-642-41199-1_2.
5
Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide.
Nature. 2013 May 2;497(7447):137-41. doi: 10.1038/nature12120. Epub 2013 Apr 21.
6
Crystal structure of pre-activated arrestin p44.
Nature. 2013 May 2;497(7447):142-6. doi: 10.1038/nature12133. Epub 2013 Apr 21.
7
Conformational biosensors reveal GPCR signalling from endosomes.
Nature. 2013 Mar 28;495(7442):534-8. doi: 10.1038/nature12000. Epub 2013 Mar 20.
8
Cell biology: Receptor signals come in waves.
Nature. 2013 Mar 28;495(7442):457-8. doi: 10.1038/nature12086. Epub 2013 Mar 20.
9
β-Arrestins and G protein-coupled receptor trafficking.
Methods Enzymol. 2013;521:91-108. doi: 10.1016/B978-0-12-391862-8.00005-3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验