Nuber Susanne, Zabel Ulrike, Lorenz Kristina, Nuber Andreas, Milligan Graeme, Tobin Andrew B, Lohse Martin J, Hoffmann Carsten
Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.
Rudolf Virchow Center, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.
Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.
(β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor-β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling.
(β-)抑制蛋白是G蛋白偶联受体(GPCR)的重要调节因子。它们与活化的、磷酸化的GPCR结合,从而阻断向G蛋白的“经典”信号传导,通过与网格蛋白机制相互作用触发GPCR的内化,并通过“非经典”途径介导信号传导。除了与视杆和视锥光感受器结合的两种视觉抑制蛋白(分别称为抑制蛋白1和抑制蛋白4)外,只有两种(非视觉)β-抑制蛋白(β-抑制蛋白1和β-抑制蛋白2,也称为抑制蛋白2和抑制蛋白3),它们调节数百种不同的(非视觉)GPCR。这些蛋白与GPCR的结合通常需要受体的活性形式及其被G蛋白偶联受体激酶(GRK)磷酸化。受体或其羧基末端的结合以及某些截短会诱导(β-)抑制蛋白的活性构象,最近通过X射线晶体学已解析出这些构象。在这里,我们使用一系列基于荧光共振能量转移(FRET)的β-抑制蛋白2生物传感器,实时研究了β-抑制蛋白与GPCR的相互作用以及在活的人类细胞中β-抑制蛋白的构象变化。我们观察到在受体与β-抑制蛋白2相互作用后迅速发生的β-抑制蛋白2构象变化的受体特异性模式。去除激动剂后,这些变化持续的时间比直接的受体相互作用更长。我们的数据表明GPCR与β-抑制蛋白之间存在快速、受体类型特异性的两步结合和激活过程。它们进一步表明β-抑制蛋白从受体解离后仍保持活性,使其能够留在细胞表面并可能独立发出信号。因此,GPCR触发了β-抑制蛋白快速、受体特异性的激活/失活循环,从而允许其进行活性信号传导。