Suppr超能文献

比较计算机生成的和病理学家生成的肿瘤分割结果以用于乳腺组织微阵列的免疫组织化学评分

Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays.

作者信息

Akbar Shazia, Jordan Lee B, Purdie Colin A, Thompson Alastair M, McKenna Stephen J

机构信息

School of Computing, University of Dundee, Dundee DD1 4HN, UK.

NHS Tayside Department of Pathology, Ninewells Hospital, Dundee DD1 9SY, UK.

出版信息

Br J Cancer. 2015 Sep 29;113(7):1075-80. doi: 10.1038/bjc.2015.309. Epub 2015 Sep 8.

Abstract

BACKGROUND

Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review.

METHODS

In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software.

RESULTS

Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; =0.91, Quickscore; =0.92).

CONCLUSIONS

The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials.

摘要

背景

组织微阵列(TMAs)已成为转化研究中生物标志物表达的重要资源。TMAs的免疫组织化学(IHC)评估是分析大量患者样本的主要方法,但TMAs的手动IHC评估仍然是一项具有挑战性且费力的任务。随着图像分析的进展,计算机生成的TMAs分析有减轻专家病理学家审查负担的潜力。

方法

在当前的商业软件中,计算机化的雌激素受体(ER)评分依赖于以手工绘制注释形式的肿瘤定位。在本研究中,通过将计算机生成的分割掩码与两名专业乳腺病理学家的掩码进行比较,评估了用于ER评分的肿瘤定位。使用FDA批准的IHC评分软件,自动和手动获得的分割掩码用于获取32个ER染色的浸润性乳腺癌TMA样本的IHC评分。

结果

尽管像素级比较显示自动分割掩码与手动分割掩码之间的一致性(κ=0.81)低于病理学家掩码之间的一致性(κ=0.91),但这对计算出的IHC评分影响很小(艾尔雷德评分;=0.91,快速评分;=0.92)。

结论

所提出的自动化系统提供了一致的测量结果,从而确保了标准化,并显示出有望增加来自大型临床试验的TMAs中核染色的IHC分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51e/4651129/3a4045cd9fec/bjc2015309f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验