Suppr超能文献

人工智能和数字生物标志物在精准病理学指导免疫治疗选择和精准肿瘤学中的应用。

Artificial intelligence and digital biomarker in precision pathology guiding immune therapy selection and precision oncology.

机构信息

Medical Faculty University Augsburg, Augsburg, Germany.

Institute for Digital Medicine, University Hospital Augsburg, Augsburg, Germany.

出版信息

Cancer Rep (Hoboken). 2023 Jul;6(7):e1796. doi: 10.1002/cnr2.1796. Epub 2023 Feb 22.

Abstract

BACKGROUND

The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re-)activate the patient's immune system and direct it against the individual cancer in the most effective way.

RECENT FINDINGS

Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune-oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune-cancer-network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer-assisted development and clinical validation of such digital biomarker.

CONCLUSIONS

The successful implementation of AI-supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into "precision pathology" delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a "precision oncology".

摘要

背景

现有的免疫疗法已经改变了许多癌症从一线到最后一线的治疗策略。了解肿瘤组织中即使是最复杂的异质性,并绘制肿瘤免疫的空间图谱,允许选择最佳和优化的免疫调节剂来(重新)激活患者的免疫系统,并以最有效的方式针对个体癌症进行引导。

最近的发现

原发癌和转移瘤保持着高度的可塑性,以逃避任何免疫监视,并根据许多内在和外在因素继续进化。在肿瘤微环境中,免疫调节因子被认为是改变治疗模式的实践。最近的研究表明,IO 治疗的最佳和持久疗效取决于对肿瘤组织标本中免疫和癌细胞的空间通讯网络和功能背景的理解。人工智能(AI)通过可视化癌症组织标本中非常复杂的肿瘤和免疫相互作用,提供了对免疫-癌症网络的深入了解,并允许计算机辅助开发和临床验证此类数字生物标志物。

结论

成功实施人工智能支持的数字生物标志物解决方案,指导基于从癌症组织图像中检索和可视化空间和上下文信息的有效免疫治疗的临床选择和标准化数据。因此,计算病理学(CP)转化为“精准病理学”,提供个体治疗反应预测。精准病理学不仅包括数字和计算解决方案,还包括在常规组织病理学工作流程中实现高水平的标准化流程,以及使用数学工具来支持临床和诊断决策,作为“精准肿瘤学”的基本原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e599/10363837/e76eba6ca7f1/CNR2-6-e1796-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验