Suppr超能文献

乳腺癌组织微阵列的自动图像分析在流行病学研究中的评估。

Assessment of automated image analysis of breast cancer tissue microarrays for epidemiologic studies.

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, USA.

出版信息

Cancer Epidemiol Biomarkers Prev. 2010 Apr;19(4):992-9. doi: 10.1158/1055-9965.EPI-09-1023. Epub 2010 Mar 23.

Abstract

BACKGROUND

A major challenge in studies of etiologic heterogeneity in breast cancer has been the limited throughput, accuracy, and reproducibility of measuring tissue markers. Computerized image analysis systems may help address these concerns, but published reports of their use are limited. We assessed agreement between automated and pathologist scores of a diverse set of immunohistochemical assays done on breast cancer tissue microarrays (TMA).

METHODS

TMAs of 440 breast cancers previously stained for estrogen receptor (ER)-alpha, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), ER-beta, and aromatase were independently scored by two pathologists and three automated systems (TMALab II, TMAx, and Ariol). Agreement between automated and pathologist scores of negative/positive was measured using the area under the receiver operating characteristics curve (AUC) and weighted kappa statistics for categorical scores. We also investigated the correlation between immunohistochemical scores and mRNA expression levels.

RESULTS

Agreement between pathologist and automated negative/positive and categorical scores was excellent for ER-alpha and PR (AUC range = 0.98-0.99; kappa range = 0.86-0.91). Lower levels of agreement were seen for ER-beta categorical scores (AUC = 0.99-1.0; kappa = 0.80-0.86) and both negative/positive and categorical scores for aromatase (AUC = 0.85-0.96; kappa = 0.41-0.67) and HER2 (AUC = 0.94-0.97; kappa = 0.53-0.72). For ER-alpha and PR, there was a strong correlation between mRNA levels and automated (rho = 0.67-0.74) and pathologist immunohistochemical scores (rho = 0.67-0.77). HER2 mRNA levels were more strongly correlated with pathologist (rho = 0.63) than automated immunohistochemical scores (rho = 0.41-0.49).

CONCLUSIONS

Automated analysis of immunohistochemical markers is a promising approach for scoring large numbers of breast cancer tissues in epidemiologic investigations. This would facilitate studies of etiologic heterogeneity, which ultimately may allow improved risk prediction and better prevention approaches.

摘要

背景

在乳腺癌病因异质性研究中,一个主要挑战是测量组织标志物的通量、准确性和可重复性有限。计算机图像分析系统可能有助于解决这些问题,但有关其使用的已发表报告有限。我们评估了在乳腺癌组织微阵列(TMA)上进行的各种免疫组织化学检测的自动分析与病理学家评分之间的一致性。

方法

先前对 440 例乳腺癌组织进行了雌激素受体(ER)-α、孕激素受体(PR)、人表皮生长因子受体 2(HER2)、ER-β和芳香酶免疫染色的 TMA,由两位病理学家和三种自动系统(TMALab II、TMAx 和 Ariol)独立评分。使用接受者操作特征曲线(ROC)下的面积(AUC)和分类评分的加权 Kappa 统计量来衡量自动分析与病理学家评分的阴性/阳性之间的一致性。我们还研究了免疫组织化学评分与 mRNA 表达水平之间的相关性。

结果

ER-α和 PR 的自动分析与病理学家的阴性/阳性和分类评分之间的一致性非常好(AUC 范围=0.98-0.99;Kappa 范围=0.86-0.91)。对于 ER-β的分类评分,一致性较低(AUC=0.99-1.0;Kappa=0.80-0.86),对于芳香酶(AUC=0.85-0.96;Kappa=0.41-0.67)和 HER2(AUC=0.94-0.97;Kappa=0.53-0.72)的阴性/阳性和分类评分也是如此。对于 ER-α和 PR,mRNA 水平与自动分析(rho=0.67-0.74)和病理学家免疫组织化学评分(rho=0.67-0.77)之间存在很强的相关性。HER2 mRNA 水平与病理学家(rho=0.63)的相关性强于自动免疫组织化学评分(rho=0.41-0.49)。

结论

免疫组织化学标志物的自动分析是对大量乳腺癌组织进行流行病学研究的一种很有前途的方法。这将有助于病因异质性研究,最终可能会改善风险预测并提供更好的预防方法。

相似文献

1
Assessment of automated image analysis of breast cancer tissue microarrays for epidemiologic studies.
Cancer Epidemiol Biomarkers Prev. 2010 Apr;19(4):992-9. doi: 10.1158/1055-9965.EPI-09-1023. Epub 2010 Mar 23.
2
Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms.
J Clin Pathol. 2017 May;70(5):428-434. doi: 10.1136/jclinpath-2016-204107. Epub 2016 Oct 11.
4
Intratumoral heterogeneity as a source of discordance in breast cancer biomarker classification.
Breast Cancer Res. 2016 Jun 28;18(1):68. doi: 10.1186/s13058-016-0725-1.
10

引用本文的文献

3
Deep Learning-Based H-Score Quantification of Immunohistochemistry-Stained Images.
Mod Pathol. 2024 Feb;37(2):100398. doi: 10.1016/j.modpat.2023.100398. Epub 2023 Dec 1.
4
Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine.
J Breast Cancer. 2023 Oct;26(5):405-435. doi: 10.4048/jbc.2023.26.e45.
5
Machine Learning for Digital Scoring of PRMT6 in Immunohistochemical Labeled Lung Cancer.
Cancers (Basel). 2023 Sep 15;15(18):4582. doi: 10.3390/cancers15184582.
6
Reliability of CD44, CD24, and ALDH1A1 immunohistochemical staining: Pathologist assessment compared to quantitative image analysis.
Front Med (Lausanne). 2022 Dec 14;9:1040061. doi: 10.3389/fmed.2022.1040061. eCollection 2022.
8
How the variability between computer-assisted analysis procedures evaluating immune markers can influence patients' outcome prediction.
Histochem Cell Biol. 2021 Nov;156(5):461-478. doi: 10.1007/s00418-021-02022-8. Epub 2021 Aug 12.
10
Quantitative Image Analysis for Tissue Biomarker Use: A White Paper From the Digital Pathology Association.
Appl Immunohistochem Mol Morphol. 2021 Aug 1;29(7):479-493. doi: 10.1097/PAI.0000000000000930.

本文引用的文献

6
Assessment of two automated imaging systems in evaluating estrogen receptor status in breast carcinoma.
Appl Immunohistochem Mol Morphol. 2007 Dec;15(4):451-5. doi: 10.1097/PAI.0b013e31802ee998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验