Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Cancer Epidemiol Biomarkers Prev. 2010 Apr;19(4):992-9. doi: 10.1158/1055-9965.EPI-09-1023. Epub 2010 Mar 23.
A major challenge in studies of etiologic heterogeneity in breast cancer has been the limited throughput, accuracy, and reproducibility of measuring tissue markers. Computerized image analysis systems may help address these concerns, but published reports of their use are limited. We assessed agreement between automated and pathologist scores of a diverse set of immunohistochemical assays done on breast cancer tissue microarrays (TMA).
TMAs of 440 breast cancers previously stained for estrogen receptor (ER)-alpha, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), ER-beta, and aromatase were independently scored by two pathologists and three automated systems (TMALab II, TMAx, and Ariol). Agreement between automated and pathologist scores of negative/positive was measured using the area under the receiver operating characteristics curve (AUC) and weighted kappa statistics for categorical scores. We also investigated the correlation between immunohistochemical scores and mRNA expression levels.
Agreement between pathologist and automated negative/positive and categorical scores was excellent for ER-alpha and PR (AUC range = 0.98-0.99; kappa range = 0.86-0.91). Lower levels of agreement were seen for ER-beta categorical scores (AUC = 0.99-1.0; kappa = 0.80-0.86) and both negative/positive and categorical scores for aromatase (AUC = 0.85-0.96; kappa = 0.41-0.67) and HER2 (AUC = 0.94-0.97; kappa = 0.53-0.72). For ER-alpha and PR, there was a strong correlation between mRNA levels and automated (rho = 0.67-0.74) and pathologist immunohistochemical scores (rho = 0.67-0.77). HER2 mRNA levels were more strongly correlated with pathologist (rho = 0.63) than automated immunohistochemical scores (rho = 0.41-0.49).
Automated analysis of immunohistochemical markers is a promising approach for scoring large numbers of breast cancer tissues in epidemiologic investigations. This would facilitate studies of etiologic heterogeneity, which ultimately may allow improved risk prediction and better prevention approaches.
在乳腺癌病因异质性研究中,一个主要挑战是测量组织标志物的通量、准确性和可重复性有限。计算机图像分析系统可能有助于解决这些问题,但有关其使用的已发表报告有限。我们评估了在乳腺癌组织微阵列(TMA)上进行的各种免疫组织化学检测的自动分析与病理学家评分之间的一致性。
先前对 440 例乳腺癌组织进行了雌激素受体(ER)-α、孕激素受体(PR)、人表皮生长因子受体 2(HER2)、ER-β和芳香酶免疫染色的 TMA,由两位病理学家和三种自动系统(TMALab II、TMAx 和 Ariol)独立评分。使用接受者操作特征曲线(ROC)下的面积(AUC)和分类评分的加权 Kappa 统计量来衡量自动分析与病理学家评分的阴性/阳性之间的一致性。我们还研究了免疫组织化学评分与 mRNA 表达水平之间的相关性。
ER-α和 PR 的自动分析与病理学家的阴性/阳性和分类评分之间的一致性非常好(AUC 范围=0.98-0.99;Kappa 范围=0.86-0.91)。对于 ER-β的分类评分,一致性较低(AUC=0.99-1.0;Kappa=0.80-0.86),对于芳香酶(AUC=0.85-0.96;Kappa=0.41-0.67)和 HER2(AUC=0.94-0.97;Kappa=0.53-0.72)的阴性/阳性和分类评分也是如此。对于 ER-α和 PR,mRNA 水平与自动分析(rho=0.67-0.74)和病理学家免疫组织化学评分(rho=0.67-0.77)之间存在很强的相关性。HER2 mRNA 水平与病理学家(rho=0.63)的相关性强于自动免疫组织化学评分(rho=0.41-0.49)。
免疫组织化学标志物的自动分析是对大量乳腺癌组织进行流行病学研究的一种很有前途的方法。这将有助于病因异质性研究,最终可能会改善风险预测并提供更好的预防方法。