Cameron Ewan, Battle Katherine E, Bhatt Samir, Weiss Daniel J, Bisanzio Donal, Mappin Bonnie, Dalrymple Ursula, Hay Simon I, Smith David L, Griffin Jamie T, Wenger Edward A, Eckhoff Philip A, Smith Thomas A, Penny Melissa A, Gething Peter W
Department of Zoology, Spatial Ecology and Epidemiology Group, University of Oxford, Tinbergen Building, Oxford OX1 3PS, UK.
Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
Nat Commun. 2015 Sep 8;6:8170. doi: 10.1038/ncomms9170.
In many countries health system data remain too weak to accurately enumerate Plasmodium falciparum malaria cases. In response, cartographic approaches have been developed that link maps of infection prevalence with mathematical relationships to predict the incidence rate of clinical malaria. Microsimulation (or 'agent-based') models represent a powerful new paradigm for defining such relationships; however, differences in model structure and calibration data mean that no consensus yet exists on the optimal form for use in disease-burden estimation. Here we develop a Bayesian statistical procedure combining functional regression-based model emulation with Markov Chain Monte Carlo sampling to calibrate three selected microsimulation models against a purpose-built data set of age-structured prevalence and incidence counts. This allows the generation of ensemble forecasts of the prevalence-incidence relationship stratified by age, transmission seasonality, treatment level and exposure history, from which we predict accelerating returns on investments in large-scale intervention campaigns as transmission and prevalence are progressively reduced.
在许多国家,卫生系统数据依然十分薄弱,无法准确统计恶性疟原虫疟疾病例。作为应对措施,已开发出一些制图方法,将感染率地图与数学关系相联系,以预测临床疟疾的发病率。微观模拟(或“基于主体”)模型是定义此类关系的一种强大的新范式;然而,模型结构和校准数据的差异意味着在用于疾病负担估计的最佳形式上尚未达成共识。在此,我们开发了一种贝叶斯统计程序,将基于函数回归的模型仿真与马尔可夫链蒙特卡罗抽样相结合,以根据一个专门构建的按年龄分层的患病率和发病率数据集校准三个选定的微观模拟模型。这使得能够生成按年龄、传播季节性、治疗水平和接触史分层的患病率与发病率关系的综合预测,据此我们预测,随着传播和患病率逐步降低,大规模干预行动的投资回报率将加速提高。