Lajoie M J, Söll D, Church G M
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
J Mol Biol. 2016 Feb 27;428(5 Pt B):1004-21. doi: 10.1016/j.jmb.2015.09.003. Epub 2015 Sep 5.
Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code.
历经35亿年的遗传漂变,标准遗传密码仍然是生命复杂性的一个基本基础,以至于在所有三个系统发育域中都高度保守。基因组工程技术现在使合理改变遗传密码成为可能,提供对病毒的抗性、与水平基因转移的遗传隔离以及防止转基因生物的环境逃逸。我们讨论了为设计遗传密码而必须克服的生化、遗传和技术挑战。