Suppr超能文献

goCMC的初步开发:一种面向GPU的用于碳离子治疗的快速跨平台蒙特卡罗引擎。

Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy.

作者信息

Qin Nan, Pinto Marco, Tian Zhen, Dedes Georgios, Pompos Arnold, Jiang Steve B, Parodi Katia, Jia Xun

机构信息

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.

出版信息

Phys Med Biol. 2017 May 7;62(9):3682-3699. doi: 10.1088/1361-6560/aa5d43. Epub 2017 Jan 31.

Abstract

Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.

摘要

蒙特卡罗(MC)模拟被认为是计算碳离子治疗中吸收剂量以及与生物效应相关的基本物理量的最准确方法。为提高其计算效率,我们开发了一种面向图形处理器(GPU)的用于碳离子治疗的快速MC软件包goCMC。goCMC在体素化几何结构中模拟动能高达450MeV/u的粒子输运。采用了具有连续慢化近似的II类凝聚历史模拟方案。对能量离散和多次散射进行了建模。δ电子以其局部沉积的能量终止。goCMC中实现了四种类型的核相互作用,即碳 - 氢、碳 - 碳、碳 - 氧和碳 - 钙非弹性碰撞。使用了来自Geant4的总截面数据。根据从Geant4模拟结果导出的具有能量和方向分布数据的粒子产额对这些相互作用中产生的次级粒子进行抽样。次级带电粒子按照凝聚历史方案进行输运,而次级中性粒子则被忽略。goCMC是在OpenCL框架下开发的,可在不同平台上执行,例如GPU和多核CPU。我们在不同束流能量和体模的情况下,包括四个均匀体模、一个非均匀半板体模和一个患者病例,用Geant4对goCMC进行了验证。对于每个病例,模拟了[公式:见原文]个碳离子,使得在剂量大于最大剂量10%的区域,平均相对统计不确定度小于1%。观察到goCMC和Geant4之间在剂量分布和射程估计方面有良好的一致性。在10%等剂量线内,除了两个极端情况外,1%/1mm标准的三维伽马通过率超过90%,2%/1mm标准的三维伽马通过率均超过96%。使用不同的GPU和CPU对效率和代码可移植性进行了测试。根据束流能量和体素大小,在AMD Radeon GPU卡、NVidia GeForce GTX 1080 GPU卡和Intel Xeon E5 - 2640 CPU上模拟[公式:见原文]个碳离子的计算时间分别为9.9 - 125秒、2.5 - 50秒和60 - 612秒。综合的准确性、效率和可移植性使得goCMC在碳离子治疗的研究和临床应用中具有吸引力。

相似文献

3
GPU-based fast Monte Carlo dose calculation for proton therapy.基于 GPU 的质子治疗快速蒙特卡罗剂量计算。
Phys Med Biol. 2012 Dec 7;57(23):7783-97. doi: 10.1088/0031-9155/57/23/7783. Epub 2012 Nov 6.
8
GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.基于 GPU 的放射治疗剂量计算快速蒙特卡罗模拟。
Phys Med Biol. 2011 Nov 21;56(22):7017-31. doi: 10.1088/0031-9155/56/22/002. Epub 2011 Oct 21.

引用本文的文献

2
Deep learning-based prediction of Monte Carlo dose distribution for heavy ion therapy.基于深度学习的重离子治疗蒙特卡罗剂量分布预测
Phys Imaging Radiat Oncol. 2025 Mar 5;34:100735. doi: 10.1016/j.phro.2025.100735. eCollection 2025 Apr.
4
Fixed Beamline Optimization for Intensity Modulated Carbon-Ion Therapy.用于调强碳离子治疗的固定束流优化
IEEE Trans Radiat Plasma Med Sci. 2022 Mar;6(3):288-293. doi: 10.1109/trpms.2021.3092296. Epub 2021 Jun 25.
5
Improving Proton Dose Calculation Accuracy by Using Deep Learning.利用深度学习提高质子剂量计算精度
Mach Learn Sci Technol. 2021 Mar;2(1). doi: 10.1088/2632-2153/abb6d5. Epub 2021 Apr 6.

本文引用的文献

9
GPU-based high-performance computing for radiation therapy.基于 GPU 的放射治疗高性能计算。
Phys Med Biol. 2014 Feb 21;59(4):R151-82. doi: 10.1088/0031-9155/59/4/R151. Epub 2014 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验