利用深度学习提高质子剂量计算精度

Improving Proton Dose Calculation Accuracy by Using Deep Learning.

作者信息

Wu Chao, Nguyen Dan, Xing Yixun, Montero Ana Barragan, Schuemann Jan, Shang Haijiao, Pu Yuehu, Jiang Steve

机构信息

Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China.

出版信息

Mach Learn Sci Technol. 2021 Mar;2(1). doi: 10.1088/2632-2153/abb6d5. Epub 2021 Apr 6.

Abstract

INTRODUCTION

Pencil beam (PB) dose calculation is fast but inaccurate due to the approximations when dealing with inhomogeneities. Monte Carlo (MC) dose calculation is the most accurate method but it is time consuming. The aim of this study was to develop a deep learning model that can boost the accuracy of PB dose calculation to the level of MC dose by converting PB dose to MC dose for different tumor sites.

METHODS

The proposed model uses the PB dose and CT image as inputs to generate the MC dose. We used 290 patients (90 head and neck, 93 liver, 75 prostate and 32 lung) to train, validate, and test the model. For each tumor site, we performed four numerical experiments to explore various combinations of training datasets.

RESULTS

Training the model on data from all tumor sites together and using the dose distribution of each individual beam as input yielded the best performance for all four tumor sites. The average gamma passing rate (1mm/1%) between the converted and the MC dose was 92.8%, 92.7%, 89.7% and 99.6% for head and neck, liver, lung, and prostate test patients, respectively. The average dose conversion time for a single field was less than 4 seconds. The trained model can be adapted to new datasets through transfer learning.

CONCLUSIONS

Our deep learning-based approach can quickly boost the accuracy of PB dose to that of MC dose. The developed model can be added to the clinical workflow of proton treatment planning to improve dose calculation accuracy.

摘要

引言

笔形束(PB)剂量计算速度快,但由于处理不均匀性时的近似处理而不够准确。蒙特卡罗(MC)剂量计算是最准确的方法,但耗时较长。本研究的目的是开发一种深度学习模型,通过将不同肿瘤部位的PB剂量转换为MC剂量,将PB剂量计算的准确性提高到MC剂量的水平。

方法

所提出的模型使用PB剂量和CT图像作为输入来生成MC剂量。我们使用290例患者(90例头颈部、93例肝脏、75例前列腺和32例肺部)来训练、验证和测试该模型。对于每个肿瘤部位,我们进行了四项数值实验,以探索训练数据集的各种组合。

结果

在来自所有肿瘤部位的数据上一起训练模型,并将每个单独射束的剂量分布作为输入,对所有四个肿瘤部位都产生了最佳性能。对于头颈部、肝脏、肺部和前列腺测试患者,转换后的剂量与MC剂量之间的平均伽马通过率(1mm/1%)分别为92.8%、92.7%、89.7%和99.6%。单个射野的平均剂量转换时间不到4秒。经过训练的模型可以通过迁移学习适应新的数据集。

结论

我们基于深度学习的方法可以快速将PB剂量的准确性提高到MC剂量的水平。所开发的模型可以添加到质子治疗计划的临床工作流程中,以提高剂量计算的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/11066728/2b91e27645e5/mlstabb6d5f1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索