Suppr超能文献

二维仿射和射影形状分析。

2D Affine and Projective Shape Analysis.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2014 May;36(5):998-1011. doi: 10.1109/TPAMI.2013.199.

Abstract

Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.

摘要

目前的形状分析技术往往寻求对相似变换(旋转、平移和缩放)的不变性,但某些成像情况需要对更大的群组保持不变,例如仿射或射影群组。在这里,我们提出了一种用于平面物体形状分析的通用黎曼框架,其中度量和相关量对仿射和射影群组保持不变。突出表示对象边界的两种可能性——有序点(或地标)和参数化曲线——我们研究了这些表示(点和曲线)和变换(仿射和射影)的不同组合。具体来说,我们提供了四种情况中的三种情况的解决方案,并开发了用于计算测地线和内在样本统计量的算法,从而得出高斯型统计模型,并使用从训练数据中学习到的此类模型对测试形状进行分类。在参数化曲线的情况下,我们还实现了对重新参数化的不变性的期望目标。测地线是通过将路径校正算法特殊化为当前流形的几何形状来构建的,然后依次用于计算形状统计量和高斯型形状模型。我们使用来自形状和活动识别的许多示例来演示这些思想。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验