Suppr超能文献

奇异值鲁棒主成分分析的部分和最小化:算法与应用。

Partial Sum Minimization of Singular Values in Robust PCA: Algorithm and Applications.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2016 Apr;38(4):744-58. doi: 10.1109/TPAMI.2015.2465956. Epub 2015 Aug 7.

Abstract

Robust Principal Component Analysis (RPCA) via rank minimization is a powerful tool for recovering underlying low-rank structure of clean data corrupted with sparse noise/outliers. In many low-level vision problems, not only it is known that the underlying structure of clean data is low-rank, but the exact rank of clean data is also known. Yet, when applying conventional rank minimization for those problems, the objective function is formulated in a way that does not fully utilize a priori target rank information about the problems. This observation motivates us to investigate whether there is a better alternative solution when using rank minimization. In this paper, instead of minimizing the nuclear norm, we propose to minimize the partial sum of singular values, which implicitly encourages the target rank constraint. Our experimental analyses show that, when the number of samples is deficient, our approach leads to a higher success rate than conventional rank minimization, while the solutions obtained by the two approaches are almost identical when the number of samples is more than sufficient. We apply our approach to various low-level vision problems, e.g., high dynamic range imaging, motion edge detection, photometric stereo, image alignment and recovery, and show that our results outperform those obtained by the conventional nuclear norm rank minimization method.

摘要

通过秩最小化的鲁棒主成分分析(RPCA)是一种强大的工具,可用于恢复干净数据中稀疏噪声/异常值的基础低秩结构。在许多低级视觉问题中,不仅已知干净数据的基础结构是低秩的,而且还知道干净数据的确切秩。然而,在将常规秩最小化应用于这些问题时,目标函数的制定方式并没有充分利用关于问题的先验目标秩信息。这一观察结果促使我们研究在使用秩最小化时是否存在更好的替代解决方案。在本文中,我们不是最小化核范数,而是提出最小化奇异值的部分和,这会隐式地鼓励目标秩约束。我们的实验分析表明,当样本数量不足时,我们的方法比传统的秩最小化方法具有更高的成功率,而当样本数量足够多时,两种方法得到的解决方案几乎相同。我们将我们的方法应用于各种低级视觉问题,例如高动态范围成像、运动边缘检测、光度立体、图像对齐和恢复,并表明我们的结果优于传统核范数秩最小化方法的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验