Suppr超能文献

与进行厌氧呼吸和发酵的菌株相比,进行有氧呼吸的原核生物菌株在细胞分裂方面表现出更广泛的温度 - 酸碱度 - 盐度范围。

Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains.

作者信息

Harrison Jesse P, Dobinson Luke, Freeman Kenneth, McKenzie Ross, Wyllie Dale, Nixon Sophie L, Cockell Charles S

机构信息

UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK

UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK.

出版信息

J R Soc Interface. 2015 Sep 6;12(110):0658. doi: 10.1098/rsif.2015.0658.

Abstract

Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division.

摘要

地球上的生物过程在一个受物理和化学极端条件限制的参数空间内运行。有氧呼吸产生的三磷酸腺苷产量可比无氧呼吸高出一个数量级以上,并且在某些条件下,与其他分解代谢模式相比,可能使微生物在更广泛的极端条件下繁殖。我们利用已发表的241种原核生物菌株的生长数据,比较了有氧代谢和无氧代谢分类群之间细胞分裂的温度、pH值和盐度值。以氧气作为末端电子受体的分离株,其细胞分裂的三维相空间(占总体积的90%)比以其他无机底物或有机化合物作为电子受体的分类群(分别占总体积的15%和28%)要广泛得多,所有组的生长特征都有所不同。要理解这些差异的机制基础,需要将微生物生态学、生理学和能量学的研究结合起来,重点关注全球尺度的过程。关键的知识空白包括多种压力参数对吉布斯能量产量和微生物活动速率的综合影响、细胞能量学与极端条件适应之间的相互作用,以及将基于实验室的数据与细胞分裂的原位限制联系起来。

相似文献

2
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
3
The limits for life under multiple extremes.
Trends Microbiol. 2013 Apr;21(4):204-12. doi: 10.1016/j.tim.2013.01.006. Epub 2013 Feb 27.
4
Reduction of the temperature sensitivity of Halomonas hydrothermalis by iron starvation combined with microaerobic conditions.
Appl Environ Microbiol. 2015 Mar;81(6):2156-62. doi: 10.1128/AEM.03639-14. Epub 2015 Jan 16.
5
The effect of oxygen on the growth and mannitol fermentation of Streptococcus mutants.
J Gen Microbiol. 1984 Jul;130(7):1819-26. doi: 10.1099/00221287-130-7-1819.
7
Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.
FEMS Microbiol Lett. 2013 Dec;349(1):40-5. doi: 10.1111/1574-6968.12290. Epub 2013 Oct 10.
8
Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1.
Biotechnol Prog. 2004 Jan-Feb;20(1):87-95. doi: 10.1021/bp034131q.
9
Energetics and evolution of anaerobic microbial eukaryotes.
Nat Microbiol. 2023 Feb;8(2):197-203. doi: 10.1038/s41564-022-01299-2. Epub 2023 Jan 16.

引用本文的文献

1
Rethinking planetary protection: an island biogeographical analysis.
J R Soc Interface. 2025 Jun;22(227):20250079. doi: 10.1098/rsif.2025.0079. Epub 2025 Jun 25.
2
Is biofilm formation intrinsic to the origin of life?
Environ Microbiol. 2023 Jan;25(1):26-39. doi: 10.1111/1462-2920.16179. Epub 2022 Sep 7.
3
Water is a preservative of microbes.
Microb Biotechnol. 2022 Jan;15(1):191-214. doi: 10.1111/1751-7915.13980. Epub 2021 Dec 22.
4
The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016.
Astrobiology. 2018 Feb;18(2):224-243. doi: 10.1089/ast.2017.1713. Epub 2018 Jan 29.
7
AstRoMap European Astrobiology Roadmap.
Astrobiology. 2016 Mar;16(3):201-43. doi: 10.1089/ast.2015.1441.

本文引用的文献

2
Reduction of the temperature sensitivity of Halomonas hydrothermalis by iron starvation combined with microaerobic conditions.
Appl Environ Microbiol. 2015 Mar;81(6):2156-62. doi: 10.1128/AEM.03639-14. Epub 2015 Jan 16.
3
Is there a common water-activity limit for the three domains of life?
ISME J. 2015 Jun;9(6):1333-51. doi: 10.1038/ismej.2014.219. Epub 2014 Dec 12.
4
Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA.
Front Microbiol. 2014 Nov 12;5:610. doi: 10.3389/fmicb.2014.00610. eCollection 2014.
6
Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria.
Nat Rev Microbiol. 2014 Dec;12(12):809-21. doi: 10.1038/nrmicro3365. Epub 2014 Nov 10.
7
Adaptations of anaerobic archaea to life under extreme energy limitation.
FEMS Microbiol Rev. 2014 May;38(3):449-72. doi: 10.1111/1574-6976.12043. Epub 2013 Nov 5.
8
Microbial activity in the marine deep biosphere: progress and prospects.
Front Microbiol. 2013 Jul 11;4:189. doi: 10.3389/fmicb.2013.00189. eCollection 2013.
9
Functional microbial diversity explains groundwater chemistry in a pristine aquifer.
BMC Microbiol. 2013 Jun 24;13:146. doi: 10.1186/1471-2180-13-146.
10
The limits for life under multiple extremes.
Trends Microbiol. 2013 Apr;21(4):204-12. doi: 10.1016/j.tim.2013.01.006. Epub 2013 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验