Harrison Jesse P, Dobinson Luke, Freeman Kenneth, McKenzie Ross, Wyllie Dale, Nixon Sophie L, Cockell Charles S
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK.
J R Soc Interface. 2015 Sep 6;12(110):0658. doi: 10.1098/rsif.2015.0658.
Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division.
地球上的生物过程在一个受物理和化学极端条件限制的参数空间内运行。有氧呼吸产生的三磷酸腺苷产量可比无氧呼吸高出一个数量级以上,并且在某些条件下,与其他分解代谢模式相比,可能使微生物在更广泛的极端条件下繁殖。我们利用已发表的241种原核生物菌株的生长数据,比较了有氧代谢和无氧代谢分类群之间细胞分裂的温度、pH值和盐度值。以氧气作为末端电子受体的分离株,其细胞分裂的三维相空间(占总体积的90%)比以其他无机底物或有机化合物作为电子受体的分类群(分别占总体积的15%和28%)要广泛得多,所有组的生长特征都有所不同。要理解这些差异的机制基础,需要将微生物生态学、生理学和能量学的研究结合起来,重点关注全球尺度的过程。关键的知识空白包括多种压力参数对吉布斯能量产量和微生物活动速率的综合影响、细胞能量学与极端条件适应之间的相互作用,以及将基于实验室的数据与细胞分裂的原位限制联系起来。