Ammendrup-Johnsen Ina, Naito Yusuke, Craig Ann Marie, Takahashi Hideto
Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.
J Neurosci. 2015 Sep 9;35(36):12425-31. doi: 10.1523/JNEUROSCI.1330-15.2015.
Neurotrophin-3 (NT-3) and its high-affinity receptor TrkC play crucial trophic roles in neuronal differentiation, axon outgrowth, and synapse development and plasticity in the nervous system. We demonstrated previously that postsynaptic TrkC functions as a glutamatergic synapse-inducing (synaptogenic) cell adhesion molecule trans-interacting with presynaptic protein tyrosine phosphatase σ (PTPσ). Given that NT-3 and PTPσ bind distinct domains of the TrkC extracellular region, here we tested the hypothesis that NT-3 modulates TrkC/PTPσ binding and synaptogenic activity. NT-3 enhanced PTPσ binding to cell surface-expressed TrkC and facilitated the presynapse-inducing activity of TrkC in rat hippocampal neurons. Imaging of recycling presynaptic vesicles combined with TrkC knockdown and rescue approaches demonstrated that NT-3 rapidly potentiates presynaptic function via binding endogenous postsynaptic TrkC in a tyrosine kinase-independent manner. Thus, NT-3 positively modulates the TrkC-PTPσ complex for glutamatergic presynaptic assembly and function independently from TrkC kinase activation. Our findings provide new insight into synaptic roles of neurotrophin signaling and mechanisms controlling synaptic organizing complexes. Significance statement: Although many synaptogenic adhesion complexes have been identified in recent years, little is known about modulatory mechanisms. Here, we demonstrate a novel role of neurotrophin-3 in synaptic assembly and function as a positive modulator of the TrkC-protein tyrosine phosphatase σ complex. This study provides new insight into the involvement of neurotrophin signaling in synapse development and plasticity, presenting a molecular mechanism that may underlie previous observations of short- and long-term enhancement of presynaptic function by neurotrophin. Given the links of synaptogenic adhesion molecules to autism and schizophrenia, this study might also contribute to a better understanding of the pathogenesis of these disorders and provide a new direction for ameliorating imbalances in synaptic signaling networks.
神经营养因子-3(NT-3)及其高亲和力受体TrkC在神经系统的神经元分化、轴突生长、突触发育和可塑性方面发挥着关键的营养作用。我们之前证明,突触后TrkC作为一种谷氨酸能突触诱导(促突触形成)细胞粘附分子,与突触前蛋白酪氨酸磷酸酶σ(PTPσ)发生反式相互作用。鉴于NT-3和PTPσ结合TrkC细胞外区域的不同结构域,在此我们测试了NT-3调节TrkC/PTPσ结合及促突触形成活性这一假说。NT-3增强了PTPσ与细胞表面表达的TrkC的结合,并促进了TrkC在大鼠海马神经元中的突触前诱导活性。对循环突触前囊泡的成像结合TrkC敲低和拯救方法表明,NT-3通过以酪氨酸激酶非依赖的方式结合内源性突触后TrkC,迅速增强突触前功能。因此,NT-3正向调节TrkC-PTPσ复合物,以实现谷氨酸能突触前组装和功能,且独立于TrkC激酶激活。我们的研究结果为神经营养因子信号传导的突触作用以及控制突触组织复合物的机制提供了新的见解。意义声明:尽管近年来已鉴定出许多促突触形成的粘附复合物,但对其调节机制知之甚少。在此,我们证明了神经营养因子-3在突触组装和功能中作为TrkC-蛋白酪氨酸磷酸酶σ复合物的正向调节剂的新作用。本研究为神经营养因子信号传导参与突触发育和可塑性提供了新的见解,提出了一种分子机制,可能是先前观察到的神经营养因子对突触前功能短期和长期增强作用的基础。鉴于促突触形成粘附分子与自闭症和精神分裂症的关联,本研究也可能有助于更好地理解这些疾病的发病机制,并为改善突触信号网络失衡提供新的方向。