Naito Yusuke, Lee Alfred Kihoon, Takahashi Hideto
Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada.
Synapse Development and Plasticity, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada.
Neurosci Res. 2017 Mar;116:10-17. doi: 10.1016/j.neures.2016.09.009. Epub 2016 Sep 30.
Tropomyosin-receptor-kinase (Trk) receptors have been extensively studied for their roles in kinase-dependent signaling cascades in nervous system development. Synapse organization is coordinated by trans-synaptic interactions of various cell adhesion proteins, a representative example of which is the neurexin-neuroligin complex. Recently, a novel role for TrkC as a synapse organizing protein has been established. Post-synaptic TrkC binds to pre-synaptic type-IIa receptor-type protein tyrosine phosphatase sigma (PTPσ). TrkC-PTPσ specifically induces excitatory synapses in a kinase domain-independent manner. TrkC has distinct extracellular domains for PTPσ- and NT-3-binding and thus may bind both ligands simultaneously. Indeed, NT-3 enhances the TrkC-PTPσ interaction, thus facilitating synapse induction at the pre-synaptic side and increasing pre-synaptic vesicle recycling in a kinase-independent fashion. A crystal structure study has revealed the detailed structure of the TrkC-PTPσ complex as well as competitive modulation of TrkC-mediated synaptogenesis by heparan sulfate proteoglycans (HSPGs), which bind the same domain of TrkC as PTPσ. Thus, there is strong evidence supporting a role for the TrkC-PTPσ complex in mechanisms underlying the fine turning of neural connectivity. Furthermore, disruption of the TrkC-PTPσ complex may be the underlying cause of certain psychiatric disorders caused by mutations in the gene encoding TrkC (NTRK3), supporting its role in cognitive functions.
原肌球蛋白受体激酶(Trk)受体因其在神经系统发育中激酶依赖性信号级联反应中的作用而得到广泛研究。突触组织由多种细胞粘附蛋白的跨突触相互作用协调,其中一个典型例子是神经连接蛋白-神经配蛋白复合体。最近,已确定TrkC作为一种突触组织蛋白具有新的作用。突触后TrkC与突触前IIa型受体型蛋白酪氨酸磷酸酶σ(PTPσ)结合。TrkC-PTPσ以激酶结构域非依赖性方式特异性诱导兴奋性突触。TrkC具有用于结合PTPσ和神经营养因子-3(NT-3)的不同细胞外结构域,因此可能同时结合这两种配体。事实上,NT-3增强了TrkC-PTPσ的相互作用,从而以激酶非依赖性方式促进突触前侧的突触诱导并增加突触前囊泡循环。一项晶体结构研究揭示了TrkC-PTPσ复合体的详细结构以及硫酸乙酰肝素蛋白聚糖(HSPG)对TrkC介导的突触形成的竞争性调节,HSPG与TrkC的同一结构域结合,就像PTPσ一样。因此,有强有力的证据支持TrkC-PTPσ复合体在神经连接精细调节机制中的作用。此外,TrkC-PTPσ复合体的破坏可能是由编码TrkC(NTRK3)的基因突变引起的某些精神疾病的潜在原因,这支持了其在认知功能中的作用。