Suppr超能文献

用于从微阵列数据中识别差异表达的统计检验的调查与比较研究

A Survey and Comparative Study of Statistical Tests for Identifying Differential Expression from Microarray Data.

作者信息

Bandyopadhyay Sanghamitra, Mallik Saurav, Mukhopadhyay Anirban

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2014 Jan-Feb;11(1):95-115. doi: 10.1109/TCBB.2013.147.

Abstract

DNA microarray is a powerful technology that can simultaneously determine the levels of thousands of transcripts (generated, for example, from genes/miRNAs) across different experimental conditions or tissue samples. The motto of differential expression analysis is to identify the transcripts whose expressions change significantly across different types of samples or experimental conditions. A number of statistical testing methods are available for this purpose. In this paper, we provide a comprehensive survey on different parametric and non-parametric testing methodologies for identifying differential expression from microarray data sets. The performances of the different testing methods have been compared based on some real-life miRNA and mRNA expression data sets. For validating the resulting differentially expressed miRNAs, the outcomes of each test are checked with the information available for miRNA in the standard miRNA database PhenomiR 2.0. Subsequently, we have prepared different simulated data sets of different sample sizes (from 10 to 100 per group/population) and thereafter the power of each test have been calculated individually. The comparative simulated study might lead to formulate robust and comprehensive judgements about the performance of each test in the basis of assumption of data distribution. Finally, a list of advantages and limitations of the different statistical tests has been provided, along with indications of some areas where further studies are required.

摘要

DNA微阵列是一项强大的技术,它能够同时测定在不同实验条件或组织样本中数千种转录本(例如由基因/微小RNA产生的转录本)的水平。差异表达分析的主旨是识别那些在不同类型样本或实验条件下表达发生显著变化的转录本。有多种统计检验方法可用于此目的。在本文中,我们对用于从微阵列数据集中识别差异表达的不同参数和非参数检验方法进行了全面综述。基于一些实际的微小RNA和信使核糖核酸表达数据集,对不同检验方法的性能进行了比较。为了验证所得的差异表达微小RNA,将每个检验的结果与标准微小RNA数据库PhenomiR 2.0中微小RNA的可用信息进行核对。随后,我们准备了不同样本量(每组/总体从10到100)的不同模拟数据集,然后分别计算每个检验的功效。该比较模拟研究可能会在数据分布假设的基础上,对每个检验的性能形成稳健而全面的判断。最后,给出了不同统计检验的优缺点列表,以及一些需要进一步研究的领域的指示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验