Suppr超能文献

从复杂的多基因变异预测面部特征。

Predicting facial characteristics from complex polygenic variations.

作者信息

Fagertun Jens, Wolffhechel Karin, Pers Tune H, Nielsen Henrik B, Gudbjartsson Daniel, Stefansson Hreinn, Stefansson Kári, Paulsen Rasmus R, Jarmer Hanne

机构信息

DTU Compute, Technical University of Denmark, Lyngby, Denmark.

Center for Biological Sequence Analysis, DTU Systems Biology, Technical University of Denmark, Lyngby, Denmark.

出版信息

Forensic Sci Int Genet. 2015 Nov;19:263-268. doi: 10.1016/j.fsigen.2015.08.004. Epub 2015 Aug 17.

Abstract

Research into the importance of the human genome in the context of facial appearance is receiving increasing attention and has led to the detection of several Single Nucleotide Polymorphisms (SNPs) of importance. In this work we attempt a holistic approach predicting facial characteristics from genetic principal components across a population of 1266 individuals. For this we perform a genome-wide association analysis to select a large number of SNPs linked to specific facial traits, recode these to genetic principal components and then use these principal components as predictors for facial traits in a linear regression. We show in this proof-of-concept study for facial trait prediction from genome-wide SNP data that some facial characteristics can be modeled by genetic information: facial width, eyebrow width, distance between eyes, and features involving mouth shape are predicted with statistical significance (p<0.03).

摘要

在面部外观背景下对人类基因组重要性的研究正受到越来越多的关注,并已导致发现了几个重要的单核苷酸多态性(SNP)。在这项工作中,我们尝试采用一种整体方法,从1266名个体的群体中基于遗传主成分预测面部特征。为此,我们进行全基因组关联分析,以选择大量与特定面部特征相关的SNP,将这些重新编码为遗传主成分,然后在线性回归中使用这些主成分作为面部特征的预测因子。在这项从全基因组SNP数据预测面部特征的概念验证研究中,我们表明一些面部特征可以由遗传信息建模:面部宽度、眉毛宽度、两眼间距以及涉及嘴型的特征具有统计学意义的预测结果(p<0.03)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验