Suppr超能文献

OpenGrowth:一种用于寻找新蛋白质配体的自动化合理算法。

OpenGrowth: An Automated and Rational Algorithm for Finding New Protein Ligands.

作者信息

Chéron Nicolas, Jasty Naveen, Shakhnovich Eugene I

机构信息

Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.

出版信息

J Med Chem. 2016 May 12;59(9):4171-88. doi: 10.1021/acs.jmedchem.5b00886. Epub 2015 Sep 23.

Abstract

We present a new open-source software, called OpenGrowth, which aims to create de novo ligands by connecting small organic fragments in the active site of proteins. Molecule growth is biased to produce structures that statistically resemble drugs in an input training database. Consequently, the produced molecules have superior synthetic accessibility and pharmacokinetic properties compared with randomly grown molecules. The growth process can take into account the flexibility of the target protein and can be started from a seed to mimic R-group strategy or fragment-based drug discovery. Primary applications of the software on the HIV-1 protease allowed us to quickly identify new inhibitors with a predicted Kd as low as 18 nM. We also present a graphical user interface that allows a user to select easily the fragments to include in the growth process. OpenGrowth is released under the GNU GPL license and is available free of charge on the authors' website and at http://opengrowth.sourceforge.net/ .

摘要

我们展示了一款名为OpenGrowth的新型开源软件,其旨在通过连接蛋白质活性位点中的小有机片段来从头创建配体。分子生长倾向于产生在统计学上类似于输入训练数据库中药物的结构。因此,与随机生长的分子相比,所产生的分子具有更好的合成可及性和药代动力学性质。生长过程可以考虑目标蛋白质的灵活性,并且可以从种子开始以模拟R基团策略或基于片段的药物发现。该软件在HIV-1蛋白酶上的初步应用使我们能够快速鉴定出预测Kd低至18 nM的新型抑制剂。我们还展示了一个图形用户界面,它允许用户轻松选择要包含在生长过程中的片段。OpenGrowth根据GNU GPL许可发布,可在作者网站以及http://opengrowth.sourceforge.net/上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验