Suppr超能文献

快速且高效的二维和三维标量场拓扑去噪方法。

Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.

出版信息

IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2585-94. doi: 10.1109/TVCG.2014.2346432.

Abstract

Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications.

摘要

数据采集、数值不精确和采样通常会在测量和模拟中引入噪声。为了有效地分析和可视化这些数据,通常需要去除这些噪声,但许多去噪技术会改变标量场的极小值和极大值。例如,极值可能会出现或消失、在空间上移动以及改变其值。这可能会导致对数据的错误解释,例如,由于去噪方法不知道这些特征,因此错误地报告区域内的最高温度降低了几度。最近,提出了一种基于全局能量优化的拓扑去噪技术,它允许对二维标量场进行拓扑控制的去噪。虽然该方法保留了极小值和极大值,但它受到数据大小的限制。我们通过引入一种新的域分解方法将这项工作扩展到大型二维数据和中型三维数据。它允许独立处理域的小补丁,同时仍然避免引入新的临界点。此外,我们提出了一种解决方案的迭代细化,与之前的方法相比,它降低了优化能量,因此可以得到更平滑的结果,更接近输入。我们在合成和真实世界的二维和三维数据集上展示了我们的技术,突出了潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验