Suppr超能文献

具有空间自适应正则化参数的基于广义全变差的MRI莱斯噪声去噪模型。

Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters.

作者信息

Liu Ryan Wen, Shi Lin, Huang Wenhua, Xu Jing, Yu Simon Chun Ho, Wang Defeng

机构信息

Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China; Research Center for Medical Image Computing, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong SAR, P.R. China.

Research Center for Medical Image Computing, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong SAR, P.R. China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China.

出版信息

Magn Reson Imaging. 2014 Jul;32(6):702-20. doi: 10.1016/j.mri.2014.03.004. Epub 2014 Mar 18.

Abstract

Magnetic resonance imaging (MRI) is an outstanding medical imaging modality but the quality often suffers from noise pollution during image acquisition and transmission. The purpose of this study is to enhance image quality using feature-preserving denoising method. In current literature, most existing MRI denoising methods did not simultaneously take the global image prior and local image features into account. The denoising method proposed in this paper is implemented based on an assumption of spatially varying Rician noise map. A two-step wavelet-domain estimation method is developed to extract the noise map. Following a Bayesian modeling approach, a generalized total variation-based MRI denoising model is proposed based on global hyper-Laplacian prior and Rician noise assumption. The proposed model has the properties of backward diffusion in local normal directions and forward diffusion in local tangent directions. To further improve the denoising performance, a local variance estimator-based method is introduced to calculate the spatially adaptive regularization parameters related to local image features and spatially varying noise map. The main benefit of the proposed method is that it takes full advantage of the global MR image prior and local image features. Numerous experiments have been conducted on both synthetic and real MR data sets to compare our proposed model with some state-of-the-art denoising methods. The experimental results have demonstrated the superior performance of our proposed model in terms of quantitative and qualitative image quality evaluations.

摘要

磁共振成像(MRI)是一种出色的医学成像方式,但在图像采集和传输过程中,图像质量常常受到噪声污染的影响。本研究的目的是使用保留特征的去噪方法来提高图像质量。在当前文献中,大多数现有的MRI去噪方法没有同时考虑全局图像先验和局部图像特征。本文提出的去噪方法是基于空间变化的莱斯噪声图假设实现的。开发了一种两步小波域估计方法来提取噪声图。遵循贝叶斯建模方法,基于全局超拉普拉斯先验和莱斯噪声假设,提出了一种基于广义总变分的MRI去噪模型。所提出的模型具有在局部法线方向上向后扩散和在局部切线方向上向前扩散的特性。为了进一步提高去噪性能,引入了一种基于局部方差估计器的方法来计算与局部图像特征和空间变化噪声图相关的空间自适应正则化参数。所提出方法的主要优点是它充分利用了全局MR图像先验和局部图像特征。已经在合成和真实MR数据集上进行了大量实验,以将我们提出的模型与一些最先进的去噪方法进行比较。实验结果表明,在定量和定性图像质量评估方面,我们提出的模型具有优越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验