Glocker Ben, Shotton Jamie, Criminisi Antonio, Izadi Shahram
IEEE Trans Vis Comput Graph. 2015 May;21(5):571-83. doi: 10.1109/TVCG.2014.2360403.
Recovery from tracking failure is essential in any simultaneous localization and tracking system. In this context, we explore an efficient keyframe-based relocalization method based on frame encoding using randomized ferns. The method enables automatic discovery of keyframes through online harvesting in tracking mode, and fast retrieval of pose candidates in the case when tracking is lost. Frame encoding is achieved by applying simple binary feature tests which are stored in the nodes of an ensemble of randomized ferns. The concatenation of small block codes generated by each fern yields a global compact representation of camera frames. Based on those representations we define the frame dissimilarity as the block-wise hamming distance (BlockHD). Dissimilarities between an incoming query frame and a large set of keyframes can be efficiently evaluated by simply traversing the nodes of the ferns and counting image co-occurrences in corresponding code tables. In tracking mode, those dissimilarities decide whether a frame/pose pair is considered as a novel keyframe. For tracking recovery, poses of the most similar keyframes are retrieved and used for reinitialization of the tracking algorithm. The integration of our relocalization method into a hand-held KinectFusion system allows seamless continuation of mapping even when tracking is frequently lost.
在任何同时定位与跟踪系统中,从跟踪失败中恢复都是至关重要的。在此背景下,我们探索了一种基于随机蕨类植物帧编码的高效关键帧重定位方法。该方法通过在跟踪模式下进行在线采集实现关键帧的自动发现,并在跟踪丢失时快速检索姿态候选。帧编码通过应用简单的二进制特征测试来实现,这些测试存储在随机蕨类植物集合的节点中。每个蕨类植物生成的小块代码的串联产生相机帧的全局紧凑表示。基于这些表示,我们将帧差异定义为逐块汉明距离(BlockHD)。通过简单地遍历蕨类植物的节点并计算相应代码表中的图像共现情况,可以有效地评估传入查询帧与大量关键帧之间的差异。在跟踪模式下,这些差异决定一个帧/姿态对是否被视为一个新的关键帧。为了进行跟踪恢复,检索最相似关键帧的姿态并将其用于跟踪算法的重新初始化。将我们的重定位方法集成到手持式KinectFusion系统中,即使跟踪频繁丢失,也能实现映射的无缝延续。