Suppr超能文献

图像压缩感知的快速二阶全变差方法

Fast Second Degree Total Variation Method for Image Compressive Sensing.

作者信息

Liu Pengfei, Xiao Liang, Zhang Jun

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.

School of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.

出版信息

PLoS One. 2015 Sep 11;10(9):e0137115. doi: 10.1371/journal.pone.0137115. eCollection 2015.

Abstract

This paper presents a computationally efficient algorithm for image compressive sensing reconstruction using a second degree total variation (HDTV2) regularization. Firstly, a preferably equivalent formulation of the HDTV2 functional is derived, which can be formulated as a weighted L1-L2 mixed norm of second degree image derivatives under the spectral decomposition framework. Secondly, using the equivalent formulation of HDTV2, we introduce an efficient forward-backward splitting (FBS) scheme to solve the HDTV2-based image reconstruction model. Furthermore, from the averaged non-expansive operator point of view, we make a detailed analysis on the convergence of the proposed FBS algorithm. Experiments on medical images demonstrate that the proposed method outperforms several fast algorithms of the TV and HDTV2 reconstruction models in terms of peak signal to noise ratio (PSNR), structural similarity index (SSIM) and convergence speed.

摘要

本文提出了一种计算效率高的算法,用于使用二阶全变差(HDTV2)正则化进行图像压缩感知重建。首先,推导了HDTV2泛函的一个最优等效公式,该公式可在谱分解框架下表述为二阶图像导数的加权L1-L2混合范数。其次,利用HDTV2的等效公式,引入一种高效的前向-后向分裂(FBS)方案来求解基于HDTV2的图像重建模型。此外,从平均非扩张算子的角度,对所提出的FBS算法的收敛性进行了详细分析。医学图像实验表明,该方法在峰值信噪比(PSNR)、结构相似性指数(SSIM)和收敛速度方面优于TV和HDTV2重建模型的几种快速算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b64/4567071/46538ba5f972/pone.0137115.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验