Suppr超能文献

通过短信进行步行干预(WalkIT)试验:针对超重和肥胖、缺乏运动的成年人的适应性干预析因随机对照试验的原理、设计与方案

The Walking Interventions Through Texting (WalkIT) Trial: Rationale, Design, and Protocol for a Factorial Randomized Controlled Trial of Adaptive Interventions for Overweight and Obese, Inactive Adults.

作者信息

Hurley Jane C, Hollingshead Kevin E, Todd Michael, Jarrett Catherine L, Tucker Wesley J, Angadi Siddhartha S, Adams Marc A

机构信息

Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, United States.

出版信息

JMIR Res Protoc. 2015 Sep 11;4(3):e108. doi: 10.2196/resprot.4856.

Abstract

BACKGROUND

Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health.

OBJECTIVE

Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults' PA compared to the static intervention components.

METHODS

Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message-based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants' daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising.

RESULTS

This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016.

CONCLUSIONS

The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently active and are overweight or obese. WalkIT is one of the first studies focusing on the individual components of combined goal setting and reward structures in a factorial design to increase walking. The trial is expected to produce results useful to future research interventions and perhaps industry initiatives, primarily focused on mHealth, goal setting, and those looking to promote behavior change through performance-based incentives.

TRIAL REGISTRATION

ClinicalTrials.gov NCT02053259; https://clinicaltrials.gov/ct2/show/NCT02053259 (Archived by WebCite at http://www.webcitation.org/6b65xLvmg).

摘要

背景

步行是一种广泛接受且常被作为目标的促进健康的方法,用于增加身体活动(PA)。增加身体活动的干预措施仅产生了微小的改善。需要更强有力且有效的行为干预成分,以增加身体活动的时间、改善心血管代谢风险指标并优化健康状况。

目的

我们的目的是介绍WalkIT试验的基本原理和方法,这是一项针对不活动的超重/肥胖成年人进行的为期4个月的析因随机对照试验(RCT)。该研究的主要目的是评估与静态干预成分相比,强化适应性成分是否能使成年人的身体活动有更大改善。

方法

参与者参加了一项2×2析因随机对照试验,并被分配到四种基于短信的半自动步行干预措施中的一种。实验成分包括适应性与静态的每日步数目标,以及即时与延迟强化。百分位数塑造和行为经济学原理被用于实施实验成分。使用Fitbit Zip测量主要结果:在为期4个月的研究期间参与者的每日身体活动(步数和步频)。次要结果包括自我报告的身体活动、心理社会结果、有氧适能以及在实验室环境中进行的前后评估的心肺风险因素。参与者通过与大学校园、社区企业和地方政府、社会群体相关的电子邮件列表和网站以及社交媒体广告招募。

结果

截至2014年12月,本研究已完成数据收集,但数据清理和初步分析仍在进行中。我们预计在2015年末至2016年初完成主要结果的分析。

结论

通过短信进行的步行干预(WalkIT)试验将进一步加深对基于理论的干预成分的理解,以增加健康、活动不足且超重或肥胖的男性和女性的身体活动。WalkIT是首批聚焦于析因设计中联合目标设定和奖励结构的各个成分以增加步行的研究之一。该试验预计将产生对未来研究干预措施以及或许对行业倡议有用的结果,主要集中在移动健康、目标设定以及那些希望通过基于表现的激励措施促进行为改变的方面。

试验注册

ClinicalTrials.gov NCT02053259;https://clinicaltrials.gov/ct2/show/NCT02053259(由WebCite存档于http://www.webcitation.org/6b65xLvmg)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e48/4704955/8e5ac5ae075c/resprot_v4i3e108_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验