Suppr超能文献

植物人工染色体技术及其在基因工程中的潜在应用。

Plant artificial chromosome technology and its potential application in genetic engineering.

作者信息

Yu Weichang, Yau Yuan-Yeu, Birchler James A

机构信息

Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China.

Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, USA.

出版信息

Plant Biotechnol J. 2016 May;14(5):1175-82. doi: 10.1111/pbi.12466. Epub 2015 Sep 15.

Abstract

Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands.

摘要

在过去20年里,仅用少数几个基因进行的基因工程就改变了农业。最常用的转基因是用于高效控制杂草的抗除草剂基因和用于抗虫的Bt毒素基因。第一代转基因作物的采用在改善耕作方式、减少对人类健康和环境都有害的农药使用以及为农民创造更多利润方面非常成功。然而,通过技术进步,基因工程还有更多潜力可实现。植物人工染色体技术的最新发展提供了一个超级载体平台,这使得下一代基因工程能够管理大量基因。随着基因组装、基因组编辑、基因靶向和染色体递送系统等其他工具的发展,培育具有多个基因的作物以用更少的自然资源投入生产更多农产品来满足未来需求应该成为可能。

相似文献

1
Plant artificial chromosome technology and its potential application in genetic engineering.
Plant Biotechnol J. 2016 May;14(5):1175-82. doi: 10.1111/pbi.12466. Epub 2015 Sep 15.
2
Advanced genetic tools for plant biotechnology.
Nat Rev Genet. 2013 Nov;14(11):781-93. doi: 10.1038/nrg3583. Epub 2013 Oct 9.
3
Towards the development of better crops by genetic transformation using engineered plant chromosomes.
Plant Cell Rep. 2011 May;30(5):799-806. doi: 10.1007/s00299-011-1001-6. Epub 2011 Jan 20.
4
Genetically modified crops: current status and future prospects.
Planta. 2020 Mar 31;251(4):91. doi: 10.1007/s00425-020-03372-8.
5
Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad.
Crit Rev Biotechnol. 2017 Jun;37(4):459-475. doi: 10.1080/07388551.2016.1180588. Epub 2016 May 12.
6
Exploiting the full potential of disease-resistance genes for agricultural use.
Curr Opin Biotechnol. 2000 Apr;11(2):120-5. doi: 10.1016/s0958-1669(00)00083-5.
7
Synthetic chromosome platforms in plants.
Annu Rev Plant Biol. 2012;63:307-30. doi: 10.1146/annurev-arplant-042110-103924. Epub 2011 Nov 28.
8
Engineered minichromosomes in plants.
Exp Cell Res. 2020 Mar 15;388(2):111852. doi: 10.1016/j.yexcr.2020.111852. Epub 2020 Jan 20.
9
Expression of complete metabolic pathways in transgenic plants.
Biotechnol Genet Eng Rev. 2012;28:1-13. doi: 10.5661/bger-28-1.
10
Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012.
GM Crops Food. 2014;5(4):321-32. doi: 10.4161/21645698.2014.958930.

引用本文的文献

2
Editorial: Recent advances in plant genetic engineering and innovative applications.
Front Plant Sci. 2022 Oct 19;13:1045417. doi: 10.3389/fpls.2022.1045417. eCollection 2022.
3
Metabolic engineering in woody plants: challenges, advances, and opportunities.
aBIOTECH. 2021 Jun 23;2(3):299-313. doi: 10.1007/s42994-021-00054-1. eCollection 2021 Sep.
4
Artificial chromosome technology and its potential application in plants.
Front Plant Sci. 2022 Sep 15;13:970943. doi: 10.3389/fpls.2022.970943. eCollection 2022.
5
Insights Into Genetic and Molecular Elements for Transgenic Crop Development.
Front Plant Sci. 2020 May 15;11:509. doi: 10.3389/fpls.2020.00509. eCollection 2020.
6
Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing.
Biomed Res Int. 2019 Mar 10;2019:6216304. doi: 10.1155/2019/6216304. eCollection 2019.
7
Transcriptome profiling of transgenic potato plants provides insights into variability caused by plant transformation.
PLoS One. 2018 Nov 8;13(11):e0206055. doi: 10.1371/journal.pone.0206055. eCollection 2018.
8
Novel technologies in doubled haploid line development.
Plant Biotechnol J. 2017 Nov;15(11):1361-1370. doi: 10.1111/pbi.12805. Epub 2017 Sep 11.
9
Diatom centromeres suggest a mechanism for nuclear DNA acquisition.
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E6015-E6024. doi: 10.1073/pnas.1700764114. Epub 2017 Jul 3.

本文引用的文献

2
Next biotech plants: new traits, crops, developers and technologies for addressing global challenges.
Crit Rev Biotechnol. 2016 Aug;36(4):675-90. doi: 10.3109/07388551.2015.1004521. Epub 2015 Feb 2.
3
Stable mitotic inheritance of rice minichromosomes in cell suspension cultures.
Plant Cell Rep. 2015 Jun;34(6):929-41. doi: 10.1007/s00299-015-1755-3. Epub 2015 Feb 3.
4
Engineered minichromosomes in plants.
Chromosome Res. 2015 Feb;23(1):77-85. doi: 10.1007/s10577-014-9454-4.
5
Engineering of plant chromosomes.
Chromosome Res. 2015 Feb;23(1):69-76. doi: 10.1007/s10577-014-9449-1.
6
An open-source system for in planta gene stacking by Bxb1 and Cre recombinases.
Mol Plant. 2014 Dec;7(12):1756-65. doi: 10.1093/mp/ssu107. Epub 2014 Oct 3.
7
Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9.
J Clin Invest. 2014 Oct;124(10):4154-61. doi: 10.1172/JCI72992. Epub 2014 Oct 1.
8
Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice.
Nucleic Acids Res. 2014;42(17):10903-14. doi: 10.1093/nar/gku806. Epub 2014 Sep 8.
9
Lab to farm: applying research on plant genetics and genomics to crop improvement.
PLoS Biol. 2014 Jun 10;12(6):e1001878. doi: 10.1371/journal.pbio.1001878. eCollection 2014 Jun.
10
Moving beyond the GM debate.
PLoS Biol. 2014 Jun 10;12(6):e1001887. doi: 10.1371/journal.pbio.1001887. eCollection 2014 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验