Suppr超能文献

3'剪接位点使用的多样调控。

Diverse regulation of 3' splice site usage.

作者信息

Sohail Muhammad, Xie Jiuyong

机构信息

Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.

Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.

出版信息

Cell Mol Life Sci. 2015 Dec;72(24):4771-93. doi: 10.1007/s00018-015-2037-5. Epub 2015 Sep 14.

Abstract

The regulation of splice site (SS) usage is important for alternative pre-mRNA splicing and thus proper expression of protein isoforms in cells; its disruption causes diseases. In recent years, an increasing number of novel regulatory elements have been found within or nearby the 3'SS in mammalian genes. The diverse elements recruit a repertoire of trans-acting factors or form secondary structures to regulate 3'SS usage, mostly at the early steps of spliceosome assembly. Their mechanisms of action mainly include: (1) competition between the factors for RNA elements, (2) steric hindrance between the factors, (3) direct interaction between the factors, (4) competition between two splice sites, or (5) local RNA secondary structures or longer range loops, according to the mode of protein/RNA interactions. Beyond the 3'SS, chromatin remodeling/transcription, posttranslational modifications of trans-acting factors and upstream signaling provide further layers of regulation. Evolutionarily, some of the 3'SS elements seem to have emerged in mammalian ancestors. Moreover, other possibilities of regulation such as that by non-coding RNA remain to be explored. It is thus likely that there are more diverse elements/factors and mechanisms that influence the choice of an intron end. The diverse regulation likely contributes to a more complex but refined transcriptome and proteome in mammals.

摘要

剪接位点(SS)使用的调控对于前体mRNA的可变剪接以及细胞中蛋白质异构体的正确表达至关重要;其破坏会导致疾病。近年来,在哺乳动物基因的3'剪接位点(3'SS)内或附近发现了越来越多的新型调控元件。这些多样的元件招募一系列反式作用因子或形成二级结构来调控3'SS的使用,大多是在剪接体组装的早期阶段。它们的作用机制主要包括:(1)因子之间对RNA元件的竞争,(2)因子之间的空间位阻,(3)因子之间的直接相互作用,(4)两个剪接位点之间的竞争,或(5)根据蛋白质/RNA相互作用模式形成的局部RNA二级结构或更长距离的环。除了3'SS,染色质重塑/转录、反式作用因子的翻译后修饰和上游信号传导提供了进一步的调控层次。在进化上,一些3'SS元件似乎在哺乳动物祖先中就已出现。此外,其他调控可能性,如非编码RNA的调控,仍有待探索。因此,很可能存在更多影响内含子末端选择的多样元件/因子和机制。这种多样的调控可能有助于哺乳动物形成更复杂但更精细的转录组和蛋白质组。

相似文献

1
Diverse regulation of 3' splice site usage.
Cell Mol Life Sci. 2015 Dec;72(24):4771-93. doi: 10.1007/s00018-015-2037-5. Epub 2015 Sep 14.
2
RNA secondary structure mediates alternative 3'ss selection in Saccharomyces cerevisiae.
RNA. 2012 Jun;18(6):1103-15. doi: 10.1261/rna.030767.111. Epub 2012 Apr 26.
3
Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition.
Int J Mol Sci. 2020 Sep 8;21(18):6553. doi: 10.3390/ijms21186553.
4
Regulation of 3' splice site selection after step 1 of splicing by spliceosomal C* proteins.
Sci Adv. 2023 Mar 3;9(9):eadf1785. doi: 10.1126/sciadv.adf1785.
5
Splicing factor Prp18p promotes genome-wide fidelity of consensus 3'-splice sites.
Nucleic Acids Res. 2023 Dec 11;51(22):12428-12442. doi: 10.1093/nar/gkad968.
9
Impact of acceptor splice site NAGTAG motif on exon recognition.
Mol Biol Rep. 2019 Jun;46(3):2877-2884. doi: 10.1007/s11033-019-04734-6. Epub 2019 Mar 6.

引用本文的文献

1
Data-driven insights to inform splice-altering variant assessment.
Am J Hum Genet. 2025 Apr 3;112(4):764-778. doi: 10.1016/j.ajhg.2025.02.012. Epub 2025 Mar 7.
6
Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing.
Mol Cell. 2021 Apr 15;81(8):1789-1801.e5. doi: 10.1016/j.molcel.2021.01.040. Epub 2021 Feb 24.
7
Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition.
Int J Mol Sci. 2020 Sep 8;21(18):6553. doi: 10.3390/ijms21186553.
8
Genome-wide evolution of wobble base-pairing nucleotides of branchpoint motifs with increasing organismal complexity.
RNA Biol. 2020 Mar;17(3):311-324. doi: 10.1080/15476286.2019.1697548. Epub 2019 Dec 19.
9
HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein.
Virol Sin. 2019 Apr;34(2):211-221. doi: 10.1007/s12250-019-00098-0. Epub 2019 Apr 3.

本文引用的文献

1
Increased stability of heterogeneous ribonucleoproteins by a deacetylase inhibitor.
Biochim Biophys Acta. 2015 Aug;1849(8):1095-103. doi: 10.1016/j.bbagrm.2015.05.001. Epub 2015 May 8.
2
Genomic functions of U2AF in constitutive and regulated splicing.
RNA Biol. 2015;12(5):479-85. doi: 10.1080/15476286.2015.1020272.
3
Evolutionary emergence of a novel splice variant with an opposite effect on the cell cycle.
Mol Cell Biol. 2015 Jun;35(12):2203-14. doi: 10.1128/MCB.00190-15. Epub 2015 Apr 13.
5
hnRNP L inhibits CD44 V10 exon splicing through interacting with its upstream intron.
Biochim Biophys Acta. 2015 Jun;1849(6):743-50. doi: 10.1016/j.bbagrm.2015.01.004. Epub 2015 Jan 24.
7
Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate.
Genes Dev. 2014 Dec 1;28(23):2663-76. doi: 10.1101/gad.252106.114.
8
Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome.
Nat Struct Mol Biol. 2014 Nov;21(11):997-1005. doi: 10.1038/nsmb.2906. Epub 2014 Oct 19.
9
A global regulatory mechanism for activating an exon network required for neurogenesis.
Mol Cell. 2014 Oct 2;56(1):90-103. doi: 10.1016/j.molcel.2014.08.011. Epub 2014 Sep 11.
10
Differential evolution of signal-responsive RNA elements and upstream factors that control alternative splicing.
Cell Mol Life Sci. 2014 Nov;71(22):4347-60. doi: 10.1007/s00018-014-1688-y. Epub 2014 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验