Department of Physics and Centre for Scientific Computing, University of Warwick , Coventry, CV4 7AL, U.K.
J Am Chem Soc. 2015 Oct 21;137(41):13352-61. doi: 10.1021/jacs.5b08098. Epub 2015 Oct 8.
Nucleation and crystal growth are important in material synthesis, climate modeling, biomineralization, and pharmaceutical formulation. Despite tremendous efforts, the mechanisms and kinetics of nucleation remain elusive to both theory and experiment. Here we investigate sodium chloride (NaCl) nucleation from supersaturated brines using seeded atomistic simulations, polymorph-specific order parameters, and elements of classical nucleation theory. We find that NaCl nucleates via the common rock salt structure. Ion desolvation-not diffusion-is identified as the limiting resistance to attachment. Two different analyses give approximately consistent attachment kinetics: diffusion along the nucleus size coordinate and reaction-diffusion analysis of approach-to-coexistence simulation data from Aragones et al. ( J. Chem. Phys. 2012, 136, 244508 ). Our simulations were performed at realistic supersaturations to enable the first direct comparison to experimental nucleation rates for this system. The computed and measured rates converge to a common upper limit at extremely high supersaturation. However, our rate predictions are between 15 and 30 orders of magnitude too fast. We comment on possible origins of the large discrepancy.
成核和晶体生长在材料合成、气候建模、生物矿化和药物制剂等领域都非常重要。尽管已经付出了巨大的努力,但成核的机制和动力学仍然是理论和实验都难以捉摸的。在这里,我们使用有种子的原子模拟、多晶型特异性有序参数和经典成核理论的元素来研究过饱和卤水中的氯化钠(NaCl)成核。我们发现 NaCl 通过常见的岩盐结构成核。离子去溶剂化-而不是扩散-被确定为附着的限制因素。两种不同的分析给出了大致一致的附着动力学:沿核大小坐标的扩散和 Aragones 等人的接近共存模拟数据的反应-扩散分析(J. Chem. Phys. 2012, 136, 244508)。我们的模拟是在实际的过饱和度下进行的,这使得可以首次对该系统的实验成核速率进行直接比较。计算和测量的速率在极高的过饱和度下收敛到一个共同的上限。然而,我们的速率预测比实际值快了 15 到 30 个数量级。我们评论了这种巨大差异的可能来源。