Korede Vikram, Nagalingam Nagaraj, Penha Frederico Marques, van der Linden Noah, Padding Johan T, Hartkamp Remco, Eral Huseyin Burak
Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
Department of Chemical Engineering, KTH Royal Institute of Technology, Teknikringen 42, 114-28 Stockholm, Sweden.
Cryst Growth Des. 2023 Apr 3;23(5):3873-3916. doi: 10.1021/acs.cgd.2c01526. eCollection 2023 May 3.
Crystallization abounds in nature and industrial practice. A plethora of indispensable products ranging from agrochemicals and pharmaceuticals to battery materials are produced in crystalline form in industrial practice. Yet, our control over the crystallization process across scales, from molecular to macroscopic, is far from complete. This bottleneck not only hinders our ability to engineer the properties of crystalline products essential for maintaining our quality of life but also hampers progress toward a sustainable circular economy in resource recovery. In recent years, approaches leveraging light fields have emerged as promising alternatives to manipulate crystallization. In this review article, we classify laser-induced crystallization approaches where light-material interactions are utilized to influence crystallization phenomena according to proposed underlying mechanisms and experimental setups. We discuss nonphotochemical laser-induced nucleation, high-intensity laser-induced nucleation, laser trapping-induced crystallization, and indirect methods in detail. Throughout the review, we highlight connections among these separately evolving subfields to encourage the interdisciplinary exchange of ideas.
结晶现象在自然界和工业实践中无处不在。在工业实践中,从农用化学品、药品到电池材料等大量不可或缺的产品都是以晶体形式生产的。然而,我们对从分子尺度到宏观尺度的结晶过程的控制还远远不够完善。这一瓶颈不仅阻碍了我们设计对维持生活质量至关重要的晶体产品性能的能力,也阻碍了资源回收方面朝着可持续循环经济发展的进程。近年来,利用光场的方法已成为操纵结晶的有前景的替代方案。在这篇综述文章中,我们根据提出的潜在机制和实验装置,对利用光与物质相互作用来影响结晶现象的激光诱导结晶方法进行了分类。我们详细讨论了非光化学激光诱导成核、高强度激光诱导成核、激光捕获诱导结晶以及间接方法。在整个综述中,我们强调这些各自独立发展的子领域之间的联系,以鼓励跨学科的思想交流。