Kim Kyung Hyuk, Choi Kiri, Bartley Bryan, Sauro Herbert M
IEEE Trans Biomed Circuits Syst. 2015 Aug;9(4):497-504. doi: 10.1109/TBCAS.2015.2461135. Epub 2015 Sep 10.
Intracellular protein copy numbers show significant cell-to-cell variability within an isogenic population due to the random nature of biological reactions. Here we show how the variability in copy number can be controlled by perturbing gene expression. Depending on the genetic network and host, different perturbations can be applied to control variability. To understand more fully how noise propagates and behaves in biochemical networks we developed stochastic control analysis (SCA) which is a sensitivity-based analysis framework for the study of noise control. Here we apply SCA to synthetic gene expression systems encoded on plasmids that are transformed into Escherichia coli. We show that (1) dual control of transcription and translation efficiencies provides the most efficient way of noise-versus-mean control. (2) The expressed proteins follow the gamma distribution function as found in chromosomal proteins. (3) One of the major sources of noise, leading to the cell-to-cell variability in protein copy numbers, is related to bursty translation. (4) By taking into account stochastic fluctuations in autofluorescence, the correct scaling relationship between the noise and mean levels of the protein copy numbers was recovered for the case of weak fluorescence signals.
由于生物反应的随机性,同基因群体内的细胞内蛋白质拷贝数存在显著的细胞间变异性。在此,我们展示了如何通过干扰基因表达来控制拷贝数的变异性。根据遗传网络和宿主的不同,可以应用不同的干扰来控制变异性。为了更全面地理解噪声在生化网络中的传播和行为方式,我们开发了随机控制分析(SCA),这是一种基于灵敏度的分析框架,用于研究噪声控制。在此,我们将SCA应用于编码在质粒上并转化到大肠杆菌中的合成基因表达系统。我们发现:(1)转录和翻译效率的双重控制提供了最有效的噪声与均值控制方式。(2)表达的蛋白质遵循在染色体蛋白质中发现的伽马分布函数。(3)导致蛋白质拷贝数细胞间变异性的主要噪声源之一与爆发性翻译有关。(4)通过考虑自发荧光中的随机波动,对于弱荧光信号的情况,恢复了蛋白质拷贝数噪声与均值水平之间正确的标度关系。