Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.
Philos Trans A Math Phys Eng Sci. 2010 Nov 13;368(1930):4995-5011. doi: 10.1098/rsta.2010.0211.
Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.
许多蛋白质和 mRNA 物种在细胞内的分子计数较低,因此其拷贝数随时间的推移会发生很大的随机波动。开发可计算的框架来模拟群体计数的随机波动对于理解细胞水平的噪声如何影响生物功能和表型至关重要。我们表明,随机混合系统 (SHSs) 为建模一组生化反应中不同化学物质的群体计数的时间演变提供了一个方便的框架。我们展示了最近开发的技术,这些技术允许快速计算群体计数的统计矩,而无需对生化反应进行计算成本高昂的蒙特卡罗模拟。最后,我们回顾了文献中的不同示例,这些示例说明了使用 SHS 对生化过程进行建模的好处。